有界集的球包与完备集相关问题的研究
发布时间:2018-07-17 03:45
【摘要】:1911年Meissner在研究欧氏空间的等宽集时引入了完备集的概念,在有界集外增加一点不增加集合的直径,则称该有界集是完备的。关于完备集,很多数学家在一般的实Banach空间特别是有限维实Banach空间中围绕着完备集及其相关性质,集合的完备化映射以及与完备集相关的若干问题做了一系列重要的工作,但是仍有很多问题未被解决。同时,我们知道,有界集的球包与完备集的性质以及完备化集的唯一性有着密切的联系并且在集合的完备化过程中扮演着重要的角色。本文在前人的研究基础上研究集合及其宽球包和紧球包的关系。本文首先回顾了完备集这一概念的来源——等宽集的一些基本性质,完备集的一些性质以及与完备集相关的若干研究问题和相关结论。其次,介绍了几个特殊赋范线性空间的范数以及关于直径点和球的一些相关知识。最后,研究了Banach空间中有界集宽球包和紧球包的边界结构、有界集及其球包的直径点以及有界集到其球包边界的距离。此外,还给出了有界集的宽球包是球的一个充要条件。
[Abstract]:In 1911, Meissner introduced the concept of complete set when he studied the equal-width set of Euclidean space. Adding a single point outside the bounded set without increasing the diameter of the set, the bounded set is said to be complete. On complete sets, many mathematicians have done a series of important work in general real Banach spaces, especially in finite dimensional real Banach spaces, around complete sets and their related properties, complete mapping of sets and some problems related to complete sets. But there are still many unsolved problems. At the same time, we know that the ball packet of bounded set is closely related to the properties of complete set and the uniqueness of complete set and plays an important role in the process of complete set. In this paper, based on the previous studies, we study the relation between the set and its broad and compact spherical packets. In this paper, we first review some basic properties of the origin of the concept of complete set, some properties of complete set, and some research problems and relevant conclusions related to complete set. Secondly, the norm of some special normed linear spaces and some relevant knowledge about diameter points and balls are introduced. Finally, the boundary structure of the bounded set, the diameter points of the bounded set and its ball packet, and the distance between the bounded set and the boundary of the bounded set are studied in Banach space. In addition, a necessary and sufficient condition for the wide ball packet of a bounded set to be a ball is given.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O177
本文编号:2128859
[Abstract]:In 1911, Meissner introduced the concept of complete set when he studied the equal-width set of Euclidean space. Adding a single point outside the bounded set without increasing the diameter of the set, the bounded set is said to be complete. On complete sets, many mathematicians have done a series of important work in general real Banach spaces, especially in finite dimensional real Banach spaces, around complete sets and their related properties, complete mapping of sets and some problems related to complete sets. But there are still many unsolved problems. At the same time, we know that the ball packet of bounded set is closely related to the properties of complete set and the uniqueness of complete set and plays an important role in the process of complete set. In this paper, based on the previous studies, we study the relation between the set and its broad and compact spherical packets. In this paper, we first review some basic properties of the origin of the concept of complete set, some properties of complete set, and some research problems and relevant conclusions related to complete set. Secondly, the norm of some special normed linear spaces and some relevant knowledge about diameter points and balls are introduced. Finally, the boundary structure of the bounded set, the diameter points of the bounded set and its ball packet, and the distance between the bounded set and the boundary of the bounded set are studied in Banach space. In addition, a necessary and sufficient condition for the wide ball packet of a bounded set to be a ball is given.
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O177
【相似文献】
相关期刊论文 前10条
1 胥红星;舒永录;原冠秀;;一个混沌系统最终有界集及其在同步中的应用[J];重庆工商大学学报(自然科学版);2008年06期
2 丘京辉;;关于w~*-有界集为强有界的条件的注记[J];苏州大学学报(自然科学);1989年02期
3 吴健荣;模糊全有界集[J];苏州城建环保学院学报;1998年01期
4 丘京辉;关于诱导极限有界集定理的推广[J];数学学报;1984年01期
5 曹定华,程纬,朱起定;空间X上的有界集族及X*不可距离化的条件[J];湖南大学学报(自然科学版);2000年05期
6 丘京辉;局部凸可尺度空间诱导极限中的有界集[J];数学学报;1991年04期
7 潘文熙;论法式超平面及有界集的直径与宏围墙[J];暨南大学学报(自然科学与医学版);2001年01期
8 龙健生;舒永录;杨洪亮;;一个多维混沌系统的最终有界集和正向不变集及其在同步之中的应用[J];重庆工商大学学报(自然科学版);2011年06期
9 王曾贻;;直观有界与包囿拓扑[J];新疆师范大学学报(自然科学版);1982年Z1期
10 杨守廉;X—有界集及其良加细覆盖[J];北京师范学院学报(自然科学版);1991年03期
相关硕士学位论文 前2条
1 张新玲;有界集的球包与完备集相关问题的研究[D];哈尔滨理工大学;2017年
2 龙健生;一类混沌系统的最终有界集及其在混沌同步中的应用[D];重庆大学;2013年
,本文编号:2128859
本文链接:https://www.wllwen.com/kejilunwen/yysx/2128859.html