当前位置:主页 > 科技论文 > 数学论文 >

逐段常变量微分方程渐近概自守解的研究

发布时间:2018-07-21 18:04
【摘要】:本文主要研究了一类逐段常变量微分方程的渐近概自守解的存在性和唯一性,并且我们还建立了概自守型函数的一些性质.具体包括如下内容:在第一章中,我们阐述了本文的研究背景以及所研究问题的发展状况;在第二章中,我们介绍了概自守型函数的基本定义和性质;在第三章中,我们主要研究以下逐段常变量微分方程:y'(t)=A(t)y(t)+B(t)y([t] +f(t,y(t),y([t])), ∈ R,其中,y(t)是p维复向量函数(p是固定的正整数),A(t)和B(t)是p × p复矩阵函数.当方程的系数A(·),B(·)和f(·)都是渐近概自守函数时,我们讨论了该方程渐近概自守解的存在性和唯一性.
[Abstract]:In this paper, we mainly study the existence and uniqueness of asymptotically almost self-preserving solutions for a class of piecewise differential equations with constant variables, and we also establish some properties of almost self-conserved functions. The main contents are as follows: in the first chapter, we describe the research background and the development of the research issues; in the second chapter, we introduce the basic definition and properties of the generalized self-defense function; in the third chapter, We study the following piecewise differential equations with constant variables: a (t) y (t) B (t) y ([t] f (t y (t), 鈭,

本文编号:2136340

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2136340.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3cd31***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com