互补问题的稀疏解
[Abstract]:Complementarity problem is a classical and important research topic in the field of optimization. It is widely used in engineering, economy and traffic balance. Sparse optimization is a new research topic in the field of optimization, and its theory, model and algorithm are developing rapidly. Finding the sparse solution of the complementarity problem is the fusion of the complementary problem and the sparse optimization problem, which has important theoretical and practical value. In this paper, we discuss some theories of sparse solution of complementarity problem, such as existence and uniqueness, and propose four effective algorithms to solve sparse solution of complementarity problem. The main results are summarized as follows: for the sparse solution of linear complementarity problem, the uniqueness of sparse solution for Z-matrix linear complementarity problem is given in theory. In the aspect of algorithm design, an unconstrained minimization model with p (0p1) norm canonical term is proposed by means of FB complementary function. The model can approach the sparse solution well with the decrease of the regular parameters. Then the threshold lower bound for each nonzero component of the local optimal solution is established. The lower bound plays an accurate role in determining the zero component in the numerical calculation. Then it considers how to select the appropriate regular parameters to make the optimal solution reach the desired sparsity. Finally, based on the above theory, A sequential smooth gradient algorithm (SSG) is proposed to solve the LP norm canonical minimization model. Numerical experiments show that the SSG algorithm can effectively solve the LP norm canonical minimization model and obtain the sparse solution of the linear complementarity problem. In order to further improve the efficiency of sparse solution algorithm for linear complementarity problems, we transform complementary constraints into fixed point equations in projection form, and propose a projective constraint minimization model with F 1 norm regular term. Then, the threshold representation theorem of the solution of the subproblem of the regular problem is given, and a shrinkage threshold projection algorithm (STP) is designed. Finally, the algorithm is applied to solve the above l _ 1 regular projection minimization problem, and the convergence of the algorithm is given. Numerical experiments show that the STP algorithm can effectively solve the L _ 1 regular projection minimization model, and can obtain the high quality sparse solution of] LCPs. In order to better approximate the L _ 0 norm of vector, we propose a projective constrained minimization model with L _ 1 / 2 norm canonical term when solving sparse solution of linear complementarity problem. Then a semi-threshold projection algorithm (HTP) is designed and its convergence is established. Finally, numerical experiments show that the HTP algorithm can effectively solve the l / 2 regular projection minimization problem and output the high quality sparse solution of LCPs. For the sparse solution of nonlinear complementarity problem, a projective constrained minimization model with F 1 norm canonical term is proposed, and then the external gradient threshold algorithm (ETA) is designed and the convergence of the algorithm is analyzed. It is proved that any accumulation point of the sequence generated by the ETA algorithm is the solution of the NCP problem. Finally, numerical experiments show that the ETA algorithm can effectively solve the L 1 regular projection minimization model, and can output the high quality sparse solution of the complementary forced nonlinear complementarity problem. Finally, the main contributions of this paper are summarized, and the further possible research directions are prospected.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:O221
【相似文献】
相关期刊论文 前10条
1 修乃华;韩继业;;对称锥互补问题[J];数学进展;2007年01期
2 张利霞;;广义互补问题弱正则性成立的一个新的充分条件[J];济宁学院学报;2007年06期
3 徐迎军;互补问题的非负最优化变形[J];菏泽师专学报;2000年04期
4 殷洪友,徐成贤,张忠秀;F-互补问题及其与极小元问题的等价性[J];数学学报;2001年04期
5 张培爱,何素艳,李兴斯;互补问题的一种光滑迭代算法[J];大连理工大学学报;2003年01期
6 唐嘉;马昌凤;;求解混合互补问题的一步光滑牛顿法[J];桂林电子科技大学学报;2006年06期
7 吴业军;杨帆;孙福树;滑伟;;一种互补问题解的存在性区间检验方法[J];南京工程学院学报(自然科学版);2006年03期
8 刘常丽;;辅助问题方法求解隐互补问题[J];泰山医学院学报;2007年05期
9 张帆;;关于二阶锥互补问题解的一些性质[J];科技信息;2009年02期
10 何素艳;姜昱汐;李兴斯;;基于凝聚函数的互补问题的光滑化算法[J];数学的实践与认识;2009年07期
相关会议论文 前1条
1 赖炎连;张立平;高自友;;效益函数与变分不等式及半定互补问题的算法[A];中国运筹学会第六届学术交流会论文集(上卷)[C];2000年
相关博士学位论文 前10条
1 胡喜珍;几类互补问题算法研究[D];武汉大学;2012年
2 商美娟;互补问题的稀疏解[D];北京交通大学;2015年
3 唐嘉;互补问题的算法研究[D];西安电子科技大学;2010年
4 刘丽霞;几类对称锥互补问题的算法研究[D];西安电子科技大学;2011年
5 张培爱;互补问题的有效算法研究[D];大连理工大学;2002年
6 王勇;两类问题的互补求解方法及二阶锥互补问题解的性质[D];天津大学;2012年
7 何素艳;互补问题算法研究及其在力学中的应用[D];大连理工大学;2003年
8 朱见广;互补问题与非线性系统的算法研究[D];西安电子科技大学;2011年
9 鲁礼勇;互补问题重构方法的进一步研究[D];天津大学;2011年
10 孙秀萍;互补问题的非内点光滑型算法研究[D];天津大学;2008年
相关硕士学位论文 前10条
1 贾红;ERM方法求解随机线性二阶锥互补问题[D];大连理工大学;2015年
2 陈源;P-阶锥互补问题解法和量子化粒子群算法性质的研究[D];西安电子科技大学;2014年
3 林钊;求解互补问题数值算法的一些研究[D];福建师范大学;2009年
4 杨少君;一类随机互补问题的算法研究[D];西安电子科技大学;2011年
5 杨晓丽;半定互补问题算法的研究[D];西安电子科技大学;2011年
6 吴源;互补问题的解法研究[D];西北大学;2001年
7 刘常丽;隐互补问题的迭代算法[D];南京航空航天大学;2005年
8 包卫军;一种求解互补问题的光滑算法[D];南京航空航天大学;2006年
9 袁泉;隐互补问题[D];南京航空航天大学;2002年
10 姜合峰;求解广义互补问题的磨光方法[D];曲阜师范大学;2004年
,本文编号:2137902
本文链接:https://www.wllwen.com/kejilunwen/yysx/2137902.html