几类微分方程的同宿和异宿轨道的研究
[Abstract]:In this paper, we use the variational method to study the homoclinic orbits of the first order Hamilton system and several classes of two order damped differential equations. Under various hypothetical conditions, the existence and multiple solutions of the homoclinic orbits are obtained respectively. The main contents are as follows: the first chapter introduces some research background, research situation and some of them. In the second chapter, the second chapter considers the following first order Hamilton system z=JHz (T, z) and a.e.t R, where H (T, z) depends on T, but t is not periodic. Under the hypothetical super two assumption that is weaker than the famous (Ambrosetti-Rabinowitz) two times condition, the existence of the homoclinic orbit is obtained by the surround theorem. In addition, the existence of the homoclinic orbit is obtained. We discuss the multiple solvability of homoclinic orbits under the two times. Improve and extend the existing results in some literature. The third chapter discusses the following differential equation u +cu-L (T) u+Wu_ (T, U) =0 with damping, where C > 0 is a constant; the symmetric matrix L (T) is non periodic on T; W (T,) is not periodic. In the case of two or two times, the existence of infinitely many homoclinic orbitals and quasi homoclinic orbitals of the equation is obtained by using the critical point theory. Some results in the existing literature are improved, and a clear answer to the open problem proposed by Zhang and Yuan is given. Furthermore, the use of the Nehari manifold is also considered when the W (T, U) indefinite number is considered. The existence of the homoclinic orbits of the equation. The fourth chapter discusses the following differential equations with damped +g (T) u-L (T) u+Wu_ (T, U) =0, wherein the G C (R, R); the symmetric matrix is not periodic; The fountain theorem discusses the existence of infinitely many homoclinic orbits when W (T, U) is super two, two times and concave convex combination terms, and improves and generalizes some results in the existing literature. The fifth chapter considers the homoclinic orbits of the following equation, the problem of u +Au-L (T) u+Wu_ (t, U) =f (T) of the following equation, and A is an inverse. A symmetric constant matrix; L (T) C (R, RN2) is a symmetric and consistent positive definite matrix; the function f L2 (R, RN) and w C1 C1 (R x), first, consider the existence and multi solvability of the homoclinic orbits of strongly indefinite problems. The existence of the heteroclinic orbit is obtained by the variational method. That is, there is a heteroclinic orbit w for a subset of M (?) RN and (?) x m, which makes w (- infinity) =x and w (+ infinity) m{x}. m{x}.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 朱德明,覃思义;伴随奇点分支的退化异宿轨道的保存和横截性[J];系统科学与数学;1999年02期
2 曾唯尧,罗交晚;指数二分性与奇异摄动系统的横戳异宿轨道[J];数学年刊A辑(中文版);1999年04期
3 徐英祥,尹丽,黄明游;一类含有参数和有理奇性哈密顿系统的同宿与异宿轨道[J];高校应用数学学报A辑(中文版);2004年02期
4 曾唯尧,井竹君;指数二分性与退化情形下的异宿分支[J];中国科学(A辑 数学 物理学 天文学 技术科学);1995年03期
5 陈建军;禹思敏;;一个分段Sprott系统及其混沌机理分析[J];物理学报;2009年11期
6 陈建军;禹思敏;;光滑Chua系统异宿轨道存在性的证明[J];工程数学学报;2011年05期
7 李风泉;一类奇异二阶Hamilton系统的异宿轨道[J];曲阜师范大学学报(自然科学版);1996年02期
8 魏许青,曾唯尧;指数型二分性,,Melnikov函数和异宿轨道[J];高校应用数学学报A辑(中文版);1996年03期
9 张伟,霍拳忠,李骊;非线性振动系统的异宿轨道分叉、次谐分叉和混沌[J];应用数学和力学;1992年03期
10 曾唯尧,井竹君;Melnikov向量与退化情形下的横截异宿轨道[J];数学学报;1997年02期
相关会议论文 前3条
1 蔡萍;李震波;唐驾时;;(2+1)维改进的KP方程的同异宿解分析[A];第九届全国动力学与控制学术会议会议手册[C];2012年
2 冯晶晶;张琪昌;王炜;;用改进的Pade法计算一类具有偶次非线性项的自治振动方程的解析同宿及异宿轨道[A];第九届全国动力学与控制学术会议会议手册[C];2012年
3 冯晶晶;张琪昌;王炜;;二维非线性振动系统同异宿轨道的类Pade逼近方法[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
相关硕士学位论文 前1条
1 赵雪;伴随鞍结点分支的异宿轨道分支[D];山东师范大学;2016年
本文编号:2139074
本文链接:https://www.wllwen.com/kejilunwen/yysx/2139074.html