求解线性离散不适定问题的改进Tikhonov算法
发布时间:2018-07-24 17:25
【摘要】:随着科学技术和生产水平的发展,不适定问题广泛出现在地球物理、自动控制等多种领域。正则化方法是求解此类问题近似解的有效算法。本文研究求解线性离散不适定问题的正则化算法。论文主要工作包括:首先,基于求解线性离散不适定问题的Tikhonov正则化方法和TSVD正则化方法,分析两者的优缺点,提出了一种求解线性离散不适定问题的混合Tikhonov正则化算法。其次,将Fractional Tikhonov正则化算法应用于投影算法,提出了求解大规模线性离散不适定问题的Arnoldi-Fractional Tikhonov正则化算法。再次,进一步提出了广义Arnoldi-Fractional Tikhonov正则化算法和限制值域的Arnoldi-Fractional Tikhonov正则化算法。而且,论文对所提出的算法都编写程序实现算法,针对经典算例,进行了数值试验和比较。数值试验结果表明了新算法是有效且具有优势的。
[Abstract]:With the development of science and technology and production level, ill-posed problems are widely used in many fields such as geophysics, automatic control and so on. Regularization method is an effective algorithm for solving approximate solutions of this kind of problems. In this paper, a regularization algorithm for solving linear discrete ill-posed problems is studied. The main work includes: firstly, based on the Tikhonov regularization method and TSVD regularization method for linear discrete ill-posed problems, a hybrid Tikhonov regularization algorithm is proposed to solve the linear discrete ill-posed problems by analyzing their advantages and disadvantages. Secondly, the Fractional Tikhonov regularization algorithm is applied to the projection algorithm, and a Arnoldi-Fractional Tikhonov regularization algorithm is proposed for solving large scale linear discrete ill-posed problems. Thirdly, the generalized Arnoldi-Fractional Tikhonov regularization algorithm and the Arnoldi-Fractional Tikhonov regularization algorithm are proposed. In addition, the algorithms are programmed to realize the algorithms, and numerical experiments and comparisons are carried out for classical examples. Numerical results show that the new algorithm is effective and has advantages.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O241
[Abstract]:With the development of science and technology and production level, ill-posed problems are widely used in many fields such as geophysics, automatic control and so on. Regularization method is an effective algorithm for solving approximate solutions of this kind of problems. In this paper, a regularization algorithm for solving linear discrete ill-posed problems is studied. The main work includes: firstly, based on the Tikhonov regularization method and TSVD regularization method for linear discrete ill-posed problems, a hybrid Tikhonov regularization algorithm is proposed to solve the linear discrete ill-posed problems by analyzing their advantages and disadvantages. Secondly, the Fractional Tikhonov regularization algorithm is applied to the projection algorithm, and a Arnoldi-Fractional Tikhonov regularization algorithm is proposed for solving large scale linear discrete ill-posed problems. Thirdly, the generalized Arnoldi-Fractional Tikhonov regularization algorithm and the Arnoldi-Fractional Tikhonov regularization algorithm are proposed. In addition, the algorithms are programmed to realize the algorithms, and numerical experiments and comparisons are carried out for classical examples. Numerical results show that the new algorithm is effective and has advantages.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O241
【相似文献】
相关期刊论文 前10条
1 石宗宝;;球面上涡度方程的一个不适定问题[J];湖南师范大学自然科学学报;1984年01期
2 郭庆平,王伟沧,向平波,童仕宽;不适定问题研究的若干进展[J];武汉理工大学学报(交通科学与工程版);2001年01期
3 栾文贵;地球物理中的反问题与不适定问题[J];地球物理学报;1988年01期
4 张改荣;不适定问题的Tikhonov正则化方法[J];山东科学;1995年03期
5 凌捷,曾文曲,卢建珠,温为民;近似数据的不适定问题正则参数的后验选择[J];广东工业大学学报;1999年04期
6 金其年,侯宗义;非线性不适定问题的最大熵方法Ⅱ[J];复旦学报(自然科学版);1997年06期
7 傅初黎,傅鹏;小波分析及其在不适定问题研究中的应用[J];高等理科教育;2003年03期
8 傅初黎,朱佑彬,陶建红,邱春雨;一个不适定问题的频域对称截断正则化方法[J];甘肃科学学报;2001年04期
9 李招文;李景;刘振海;;非线性不适定问题的双参数正则化[J];中国科学(A辑:数学);2007年09期
10 李荷y,
本文编号:2142108
本文链接:https://www.wllwen.com/kejilunwen/yysx/2142108.html