空间异质环境中SIS传染病模型若干问题研究
[Abstract]:Infectious diseases have been accompanied by the development of human society. In history, the continuous outbreak and spread of infectious diseases have brought great disasters to human beings. Although today's social science and technology continue to develop and medical conditions have been greatly improved, the WHO (WHO) claims that infectious diseases are still the greatest threat to human health. It is necessary to understand the distribution of the disease, the law of space-time transmission and the appropriate control strategy. Since the 1927 American mathematician Kermack and the Scotland medical scientist, the epidemiologist McKendrick constructed the famous SIR "warehouse room" model, the mathematical model has become a study of the law of disease transmission, the assessment of the risk of infection, and the optimization of the control strategy. In the early stage, the researchers mainly studied the space independent ordinary differential system, which only responded to the dynamic characteristics of the time lapse. In order to describe the reality more truly, the researchers found that space diffusion was an important factor affecting the spread of disease. In recent years, with the further research, researchers have gradually realized that space diffusion and environmental heterogeneity have played an important role in the transmission of some infectious diseases, such as influenza, malaria, West Nile virus and so on. In addition, periodicity, convection, media coverage, and the allocation of limited medical resources in the transmission of infectious diseases This thesis mainly focuses on the effects of spatial heterogeneity, periodic, convection, nonlinear recovery and nonlinear incidence on the spread and decline of SIS infectious disease model. The main research work of this paper is as follows. In the second chapter, the second chapter mainly studies an infectious disease model with free boundary and convective effects in the heterogeneous environment. First, the existence and uniqueness and the positive nature of the global solution are obtained by using the Lp theory of the initial boundary value problem of the parabolic equation, the Zorn lemma and the compression mapping principle. It introduces the definition and the analytic properties of the risk index R0F (T) of the free boundary problem. By means of the risk index RF (T), by constructing the fine upper solution and the lower solution, the two alternative theorem of the spread and decline of the disease is obtained, and the criterion of the spread and regression is given. Near expansion speed. The numerical simulation gives the effect of convection intensity and expansion ability on the edge of the infected region. These results are completely different from the kinetic properties of the fixed area. The third chapter discusses the infectious disease model with free boundary in the periodic heterogeneous environment. First, the basic regeneration number is introduced, and two is given. An explicit expression under special circumstances. The risk index R0F (tau) of the free boundary problem is given by means of the aid spectrum radius. The index is closely related to the principal eigenvalues of the corresponding periodic parabolic problem. The maximum modulus principle, the upper and lower solutions, the spectral analysis and the other techniques of the partial differential equation prove the spread and decline of the disease. In the fourth chapter, a diffusion model of SIS infectious disease with the influence of media coverage in a heterogeneous environment is proposed. In the model, we use the factor of media coverage to reflect the nonlinear contact rate of the disease. First, we use the variational method to give the definition and the analytic properties of the basic regeneration number with media coverage and diffusion in the heterogeneous environment. Then we give the existence of the disease-free equilibrium point and the equilibrium point of the disease, and then use the upper and lower solutions and the monotone iterative sequence. The classical semigroup theory and the strong extremum principle prove that the disease free equilibrium point is globally asymptotically stable when R0D1, and when R0D1, the global asymptotic stability of the equilibrium point of the disease is proved. The numerical simulation shows that the risk of infection of the disease will be reduced if the media coverage is increased, thus the infectious disease can be controlled quickly and effectively. In the fifth chapter, the SIS infectious disease model, which is affected by the allocation of limited medical resources in the spatial heterogeneity environment, is considered. The effects of environmental heterogeneity and the allocation of limited medical resources on the spread and regression of the disease are discussed. First, the threshold R0* and R0* related to the maximum and minimum recovery rate are given by the variational method. By means of these two thresholds, as well as the method of the upper and lower solutions, the monotone iterative dynamics, the multiplication and multiplication technique, the existence, uniqueness and stability of the disease free equilibrium point and the equilibrium point of the disease are proved. The numerical simulation shows that the allocation of the appropriate number of beds is not essential for the control of the disease. Our theoretical results are for public health. The management department provides a theoretical basis for the optimization of the allocation of limited medical resources. In the sixth chapter, we have summarized the main work of this paper, and on this basis, we made further plans for the future research work.
【学位授予单位】:扬州大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O175
【相似文献】
相关期刊论文 前10条
1 王达,张丹松;与年龄相关具有空间结构的非线性传染病模型的周期解[J];吉林化工学院学报;1997年02期
2 李建民,白天帅;考虑出生与死亡因素的传染病模型[J];平顶山师专学报;2000年02期
3 窦家维;一类具有扩散的SI传染病模型[J];西北大学学报(自然科学版);2003年01期
4 高淑京;具有常数脉冲免疫SI传染病模型的稳定性[J];广州大学学报(自然科学版);2003年01期
5 李建全,杨友社;一类带有确定隔离期的传染病模型的稳定性分析[J];空军工程大学学报(自然科学版);2003年03期
6 岳锡亭,潘家齐;人口有增长传染病模型的定性分析[J];长春工业大学学报(自然科学版);2003年03期
7 朱庆国;关于一类传染病模型的空间周期解及混沌[J];工程数学学报;2005年06期
8 李颖路;雷磊;马润年;;一类离散的传染病模型分析[J];空军工程大学学报(自然科学版);2006年03期
9 傅朝金;黄振华;;时滞传染病模型的指数稳定性[J];生物数学学报;2007年02期
10 张群英;张来;朱石花;;一类具扩散的两种群相互作用的传染病模型[J];扬州大学学报(自然科学版);2007年03期
相关会议论文 前2条
1 陈军杰;朱静芬;;依赖于总人群数接触率的SEI传染病模型的稳定性[A];数学·力学·物理学·高新技术研究进展——2002(9)卷——中国数学力学物理学高新技术交叉研究会第9届学术研讨会论文集[C];2002年
2 陈方方;曹保锋;洪灵;;一类具有时滞及非线性饱和特性发生率的SIRS传染病模型的稳定性与Hopf分岔分析[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
相关重要报纸文章 前1条
1 本报驻加拿大记者 杜华斌;数学模型:防疫决策的“特别助理”[N];科技日报;2009年
相关博士学位论文 前10条
1 钟晓静;随机生物系统的动力学研究[D];华南理工大学;2015年
2 覃文杰;有限资源下非光滑生物系统理论与应用研究[D];陕西师范大学;2015年
3 孙新国;具时滞和免疫反应的传染病模型动力学性质研究[D];哈尔滨工业大学;2015年
4 郭英佳;若干生物学和传染病学模型的动力学研究[D];吉林大学;2015年
5 张向华;几类带Lévy跳的随机传染病模型的动力学性质分析[D];哈尔滨工业大学;2014年
6 王喜英;具有切换参数和脉冲控制的HIV传染病模型的动力学研究[D];西北工业大学;2015年
7 樊小琳;种群、传染病及复杂网络微分方程模型动力学行为研究[D];新疆大学;2016年
8 庞彦尼;随机SIQS传染病模型的动力学研究[D];吉林大学;2015年
9 葛静;空间异质环境中SIS传染病模型若干问题研究[D];扬州大学;2017年
10 林玉国;白噪声扰动下的随机传染病模型动力学行为[D];东北师范大学;2015年
相关硕士学位论文 前10条
1 张巍巍;具有人口迁移和入境检测隔离措施的传染病模型分析[D];哈尔滨工业大学;2010年
2 代洪祥;一类具有隔离项的随机SIQS传染病模型全局正解的渐近行为[D];暨南大学;2015年
3 肖延举;一类具有标准发生率与饱和治疗函数的SIRS传染病模型的稳定性和Bogdanov-Takens分支[D];东北师范大学;2015年
4 刘洋;随机变人口SISV传染病模型的动力学行为[D];东北师范大学;2015年
5 杨秋野;具有潜伏期的传染病的预防接种策略[D];渤海大学;2015年
6 高连英;三类具有非线性传染率的传染病模型的研究[D];渤海大学;2015年
7 吉学盛;几类传染病模型的研究[D];集美大学;2015年
8 刘爽;随机多群体SIS传染病模型的动力学行为[D];东北师范大学;2015年
9 牛秀钦;顺序数据同化方法在传染病模型模拟预测中的应用[D];兰州大学;2015年
10 李文娟;一类离散SIRS传染病模型的稳定性分析[D];山西大学;2015年
,本文编号:2154089
本文链接:https://www.wllwen.com/kejilunwen/yysx/2154089.html