一类时间离散捕食者-食饵系统中的分岔研究
发布时间:2018-08-08 18:58
【摘要】:讨论了具有比率依赖型功能反应函数以及捕食者具有可替换食物源特征的时间离散捕食者-食饵系统的稳定性和Neimark-Sacker分岔.通过Jury判据确定了离散系统不动点的稳定性条件;运用中心流形定理和分岔理论分析了Neimark-Sacker分岔的存在性条件;通过数值模拟揭示了由Neimark-Sacker分岔所引起的通往混沌的路径以及混沌路径上的倍周期过程.
[Abstract]:The stability and Neimark-Sacker bifurcation of a time discrete predator-prey system with a ratio dependent functional response function and a predator with the characteristics of alternative food sources are discussed. The stability condition of fixed point of discrete system is determined by Jury criterion, and the existence condition of Neimark-Sacker bifurcation is analyzed by using center manifold theorem and bifurcation theory. The path to chaos caused by Neimark-Sacker bifurcation and the periodic doubling process on chaotic path are revealed by numerical simulation.
【作者单位】: 华北电力大学工程生态学与非线性科学研究中心;
【基金】:国家水体污染控制与治理科技重大专项(2009ZX07210-009,2015ZX07203-011,2015ZX07204-007) 国家自然科学基金项目(39560023) 山东省环境瓶颈解析与突破项目(SDHBPJ-ZB-08)
【分类号】:O175
,
本文编号:2172712
[Abstract]:The stability and Neimark-Sacker bifurcation of a time discrete predator-prey system with a ratio dependent functional response function and a predator with the characteristics of alternative food sources are discussed. The stability condition of fixed point of discrete system is determined by Jury criterion, and the existence condition of Neimark-Sacker bifurcation is analyzed by using center manifold theorem and bifurcation theory. The path to chaos caused by Neimark-Sacker bifurcation and the periodic doubling process on chaotic path are revealed by numerical simulation.
【作者单位】: 华北电力大学工程生态学与非线性科学研究中心;
【基金】:国家水体污染控制与治理科技重大专项(2009ZX07210-009,2015ZX07203-011,2015ZX07204-007) 国家自然科学基金项目(39560023) 山东省环境瓶颈解析与突破项目(SDHBPJ-ZB-08)
【分类号】:O175
,
本文编号:2172712
本文链接:https://www.wllwen.com/kejilunwen/yysx/2172712.html