Bose-Einstein凝聚基态解的时空自适应方法
[Abstract]:Partial differential equations are widely used to describe many practical problems in modern science and engineering calculation. It is very important to solve the differential equations which do not exist in analytic solutions. With the development of mathematical theory and calculation methods, the finite difference method, finite volume method and finite element method have been able to solve most differential equations. However, for the equations with singular numerical solutions, if the uniform grid requires a lot of computing resources, especially the high-dimensional problem, it may be beyond the computing power of the computer. The moving mesh method redistributes the mesh according to the characteristics of the numerical solution, which can effectively reduce the calculation error without wasting computing resources. At the same time, in the actual numerical calculation, it may take a long time to select the uniform time step. The time adaptive method can continuously adjust the time step in the calculation process, thus improving the efficiency of numerical calculation. In 1925, Einstein predicted that the particles in the gas at very low temperature would be in the same quantum state. Bose-Einstein condensed state (BEC). Was found in rarefied alkali metal gases. This problem has attracted the attention of physicists and mathematicians. The nonlinear Schrodinger (NLS) equation is usually used to describe the single particle properties of Bose-Einstein condensed matter. A large number of researchers have studied the nonlinear Schrodinger equation theoretically and numerically, and put forward a series of numerical solutions. In the infinite potential well, the boundary layer will appear in the ground state solution of Bose-Einstein condensate when there is a strong interaction between the particles. Therefore, it needs a lot of computing resources to calculate the ground state solution using uniform grid. At the same time, to solve the ground state solution of Bose-Einstein condensation is to find the minimum point of the energy functional under the limited condition. The energy changes sharply in the initial stage of numerical calculation, but changes very slowly when it is near convergence. Therefore, it takes a long calculation time to adopt the uniform time step. According to the spatial and temporal characteristics of the numerical solution of the problem, using the moving grid method in space and time adaptive method in time can effectively improve the efficiency of numerical calculation. In this paper, a spatiotemporal adaptive finite element method is introduced to solve the ground state solution of Bose-Einstein condensed matter. Firstly, the adaptive method and the theory of nonlinear Schrodinger equation are introduced. Secondly, the moving grid method based on equal distribution principle for one-dimensional problem, the mobile grid method based on harmonic mapping and the time adaptive method for two-dimensional problem are introduced. Then, the numerical characteristics of ground state solutions of Bose-Einstein condensed matter under different potential wells are analyzed, and how to realize mobile grid technology in space and self-adaptation in time are proposed. Based on the spatio-temporal adaptive finite element method, a numerical example of the ground state solution of Bose-Einstein condensation in one and two dimensions is given. The numerical results of uniform mesh and moving grid are analyzed and compared, and the validity of the spatio-temporal adaptive method is pointed out.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.82
【相似文献】
相关期刊论文 前10条
1 刘堂昆 ,王继锁 ,詹明生;A Disentanglement Scheme of One-off on Two Einstein-Podolsky-Rosen Pairs of Atoms[J];量子光学学报;2002年S1期
2 陈付广,黄德斌,郭荣伟;Dynamics in Two Periodically Driven and Weakly Coupled Bose-Einstein Condensates[J];Journal of Shanghai University;2005年03期
3 ;Einstein's Impact on Theoretical Physics in the 21st Century[J];自然科学史研究;2005年S1期
4 Gerald Holton;Einstein's Third Paradise[J];自然科学史研究;2005年S1期
5 Diana Kormos Buchwald;The Einstein Papers Project 1955~2005[J];自然科学史研究;2005年S1期
6 ;Albert Einstein, Physics and Life—Interview with Prof.C.N.Yang[J];自然科学史研究;2005年S1期
7 Gerald Holton;Einstein’s Third Paradis[J];自然辩证法通讯;2005年01期
8 ;Envelope Periodic Solutions to One-Dimensional Gross-Pitaevskii Equation in Bose-Einstein Condensation[J];Communications in Theoretical Physics;2009年06期
9 唐基清;俞慧友;颜家壬;周正;;Exact Nonstationary Solutions of a Two-Component Bose-Einstein Condensate[J];Communications in Theoretical Physics;2010年02期
10 ;Einstein's Theory of Gravity: Alternative Experiment and Theory[J];Chinese Journal of Systems Engineering and Electronics;1995年04期
相关会议论文 前10条
1 ;Long Range Order and Bose-Einstein Condensation of Magnons in Gapped Spin Systems[A];2006“与统计有关的凝聚态物理中一些数值计算问题”研讨会论文集[C];2006年
2 ;On the way to Bose-Einstein condensates in Optical and Electro-Magnetic Traps[A];Laser Cooling: Bose-Einstein Condensation and Atom Laser--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
3 刘堂昆;王继锁;詹明生;;A Disentanglement Scheme of One-off on Two Einstein-Podolsky-Rosen Pairs of Atoms[A];第十届全国量子光学学术报告会论文论文集[C];2002年
4 Ennio Arimondo;;Nonlinear Effects for Bose Einstein Condensates in Optical Lattices[A];第十二届全国量子光学学术会议论文摘要集[C];2006年
5 ;Experimental Study on Atom Laser and Bose-Einstein Condensate[A];第十二届全国量子光学学术会议论文摘要集[C];2006年
6 刘伍明;;Non-Abelian Josephson effect[A];第十四届全国量子光学学术报告会报告摘要集[C];2010年
7 ;Chaos and Bifurcations for the two-component Bose-Einstein Condensate System[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文集[C];2007年
8 李继彬;;Chaos and Bifurcations for the two component Bose-Einstein Condensate System[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
9 J.S.Bell;;On the Einstein-Podolsky-Rosen paradox[A];Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
10 ;Ultracold Atoms:From Bose-Einstein Condensation to Atomic Superfluidity[A];Laser Cooling: Bose-Einstein Condensation and Atom Laser--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
相关博士学位论文 前10条
1 李德贺;关于广义m-quasi-Einstein流形的研究[D];郑州大学;2017年
2 李朝红;耦合Bose-Einstein凝聚体系与强激光场中原子分子体系的非线性现象[D];中国科学院研究生院(武汉物理与数学研究所);2003年
3 王辉;不变Einstein-Randers空间[D];南开大学;2010年
4 张向东;关于Bose-Einstein粒子模型的量子Boltzmann方程[D];清华大学;2011年
5 陈胜;非紧半单李群上的左不变伪Einstein度量[D];南开大学;2012年
6 沈明;Einstein场方程的严格解[D];浙江大学;2010年
7 何源;理论物理中若干前沿问题的研究—Bose-Einstein凝结的转变温度与关联函数、各向异性电阻率测量理论、电声超导模型的渐近严格精确解[D];复旦大学;2009年
8 陈碧欢;基于需求和体系结构的软件系统自适应方法[D];复旦大学;2014年
9 王周峰;几种光栅问题的自适应DtN有限元方法[D];南京大学;2015年
10 赵迎功;统计机器翻译中领域自适应问题研究[D];南京大学;2015年
相关硕士学位论文 前10条
1 冯悦;Bose-Einstein凝聚基态解的时空自适应方法[D];浙江大学;2017年
2 李新克;微扰法解Einstein场方程的研究[D];郑州大学;2007年
3 孔姗姗;第四类Hua结构上的Einstein-K(?)hler度量[D];首都师范大学;2007年
4 张文娟;第三类Cartan-Hartogs域的Einstein-K(?)hler度量[D];首都师范大学;2004年
5 唐俊丽;一类Hartogs域上的Monge-Ampère方程及其完备的Einstein-K(?)hler度量[D];首都师范大学;2009年
6 胡冰;关于Einstein黎曼流形的若干问题的研究[D];安徽师范大学;2005年
7 魏峗峗;Bose-Einstein凝聚中一类非线性Schr(?)dinger方程[D];成都理工大学;2007年
8 谢奕;基于Agent的开放系统自适应框架[D];复旦大学;2014年
9 陈星;带齐次混合边界特征值问题的一种基于多尺度离散的有限元自适应算法[D];贵州师范大学;2015年
10 余媛媛;基于移位反迭代的非协调Crouzeix-Raviart有限元自适应方法求Laplace特征值问题[D];贵州师范大学;2015年
,本文编号:2173071
本文链接:https://www.wllwen.com/kejilunwen/yysx/2173071.html