完全模糊线性规划及其模糊近似解
[Abstract]:There has been a lot of discussion about fuzzy linear programming, which is shown in the case that the element in the objective function or constraint condition is a triangular fuzzy number. The method is to transform the fuzzy number into a distinct linear programming by using the level cut set representation of the fuzzy number. The existing methods and results will be limited to the problem of linear programming with fuzzy numbers involving both objective function and constraint conditions, that is, the problem of complete fuzzy linear programming. In this paper, the calculation and representation of the complete fuzzy linear programming problem and its fuzzy approximate solution are studied systematically. First of all, on the basis of extending the definition of LR-fuzzy number, the approximate representation and transformation theorem of complete fuzzy constraint conditions are discussed. The completely fuzzy linear programming problem is directly transformed into a distinct linear programming solution, which is compared with the existing results and an example is given. Secondly, by using the approximate multiplication of GLR-fuzzy numbers and the new fuzzy number order relation, the complete fuzzy linear programming with GLR-fuzzy number decision parameters and variables is transformed into a distinct multi-objective linear programming problem. The numerical examples are compared with the existing results. Finally, by using the algorithm of LR- trapezoid fuzzy number, the representation theorem of complete fuzzy constraint condition is obtained, and the multiobjective linear programming with three objective functions is established. The optimistic approach and the linear summation approach are used to solve the multiobjective programming, and the fuzzy optimal solution of the complete fuzzy linear programming problem based on LR- trapezoid fuzzy number is discussed, which generalizes and enriches the previous work and gives an example analysis.
【学位授予单位】:西北师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O159;O221
【相似文献】
相关期刊论文 前10条
1 朱灏;刘鑫;万琼;刘文芳;;梯形模糊数语言指标值的工程综合评估[J];铁道科学与工程学报;2006年04期
2 吕智颖;黄天民;郑理伟;;一种基于梯形模糊数的模糊多属性格序决策方法[J];数学的实践与认识;2013年02期
3 曾三云;;基于可能度的梯形模糊数排序方法[J];广西科学;2012年01期
4 万树平;张小路;;基于加权可能性均值的直觉梯形模糊数矩阵博弈求解方法[J];控制与决策;2012年08期
5 兰继斌;李勇;;基于类质心的梯形模糊数排序[J];淮北煤炭师范学院学报(自然科学版);2008年03期
6 李勇;兰继斌;;梯形模糊数排序及应用[J];重庆工学院学报(自然科学版);2008年10期
7 程战员;郑思莉;宋宁宁;;基于梯形模糊数和模糊重心的择偶优化模型[J];软件导刊;2012年03期
8 张伟竞;黄天民;陈尚云;;基于直觉梯形模糊数的多属性决策方法[J];西南民族大学学报(自然科学版);2012年04期
9 周圣;史本山;孟伟;文忠平;;基于梯形模糊数的贷款组合优化管理决策[J];软科学;2013年12期
10 张小路;;基于直觉梯形模糊数的风险投资决策问题研究[J];东方企业文化;2011年04期
相关会议论文 前1条
1 李筠;沙定国;;模糊方法在测量数据处理中的应用[A];首届信息获取与处理学术会议论文集[C];2003年
相关硕士学位论文 前7条
1 张根桃;含两型模糊数的最小一乘回归模型的探讨[D];广州大学;2016年
2 赵文翠;完全模糊线性规划及其模糊近似解[D];西北师范大学;2015年
3 胡文华;基于梯形模糊数的信息不确定的多准则策方法及应用研究[D];中南大学;2011年
4 刘志强;基于广义梯形模糊数的模糊风险分析[D];广州大学;2013年
5 张伟竞;基于直觉梯形模糊数的多属性决策方法[D];西南交通大学;2013年
6 吴士芬;基于改进的AHP标度的江苏省和谐社会综合评价研究[D];南京信息工程大学;2007年
7 姚嘉祺;寿险产品模糊定价相关问题的研究[D];复旦大学;2009年
,本文编号:2179122
本文链接:https://www.wllwen.com/kejilunwen/yysx/2179122.html