两种求解大型对称正定矩阵极大特征值问题的修正BFGS算法
[Abstract]:This paper presents two numerical algorithms for solving the maximum eigenvalue problem of high dimensional real symmetric positive definite matrices: conservative BFGS algorithm based on Armijo type linear search and finite memory BFGS algorithm. The convergence of the algorithm is analyzed and the validity of the algorithm is verified by numerical experiments. In the first chapter, the optimal solution, descent direction and various linear searches of unconstrained optimization problems are introduced briefly, and the Newton method and quasi-Newton method for solving unconstrained optimization problems are reviewed. The relevant knowledge of solving matrix eigenvalue problem and the optimization model and algorithm for solving high dimensional matrix maximum eigenvalue problem are listed. Finally, the main contributions of this paper are briefly stated, and some symbols used in this paper are listed. In chapter 2, based on the unconstrained optimization problem, a conservative BFGS algorithm is proposed to solve the maximal eigenvalue problem of large real symmetric positive definite matrix. The proposed algorithm effectively avoids the problem of solving large Hessian matrix inverse. At the same time, the global convergence of the algorithm is established under some suitable conditions. Finally, the proposed algorithm is compared with the command to calculate the maximum eigenvalue of the matrix in EIGS (Matlab. Experimental results show that the algorithm is stable, fast and efficient. In chapter 3, a finite memory BFGS algorithm for solving nonconvex optimization problems is proposed, and then the maximum eigenvalues of real symmetric positive definite matrices are calculated by the proposed algorithm. The proposed algorithm is based on the modified quasi-Newton equation and uses Armijo type linear search. Without assuming that the objective function is convex, the proposed algorithm converges to a stable point of the problem. Furthermore, the maximum eigenvalues of (UF) sparse matrices with a set dimension of 54929 dimensional symmetric positive definite matrices are solved by numerical experiments and compared with EIGS. Although the algorithm theoretically converges to a stable point rather than a global minimum point of the problem, numerical experiments show that the proposed algorithm can calculate the maximum eigenvalue. The fourth chapter summarizes the full text and gives some problems worthy of further study.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.6
【相似文献】
相关期刊论文 前10条
1 Hong Xia YIN;Dong Lei DU;;The Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems[J];Acta Mathematica Sinica(English Series);2007年07期
2 ;LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS[J];Journal of Computational Mathematics;2007年01期
3 ;THE CONVERGENCE OF A NEW MODIFIED BFGS METHOD WITHOUT LINE SEARCHES FOR UNCONSTRAINED OPTIMIZATION OR COMPLEXITY SYSTEMS[J];Journal of Systems Science & Complexity;2010年04期
4 BABAIE-KAFAKI Saman;;A modified BFGS algorithm based on a hybrid secant equation[J];Science China(Mathematics);2011年09期
5 邓乃扬;陈志;;关于最佳可变存贮BFGS法的探讨[J];运筹学杂志;1982年01期
6 ;On the Convergence of BFGS Algorithm[J];数学研究与评论;1989年04期
7 ;A MODIFIED BFGS FORMULA MAINTAINING POSITIVE DEFINITENESS WITH ARMIJO-GOLDSTEIN STEPLENGTHS[J];Journal of Computational Mathematics;1995年02期
8 陈忠,,费浦生;ON THE CONVERGENCE OF PARALLEL BFGS METHOD[J];Acta Mathematica Scientia;1995年03期
9 郑瑾环;无线搜索BFGS公式的改进[J];云南师范大学学报(自然科学版);2002年06期
10 吴庆军;一个新的改进的BFGS方法[J];广西师范学院学报(自然科学版);2003年04期
相关会议论文 前4条
1 刘中意;孙文瑜;;大型有界约束最优化问题的子空间有限存储BFGS算法(英文)[A];中国运筹学会第九届学术交流会论文集[C];2008年
2 戴_g虹;;BFGS方法的收敛性质[A];2006年中国运筹学会数学规划分会代表会议暨第六届学术会议论文集[C];2006年
3 杨月婷;纪颖;王大力;;改进的有限内存BFGS算法的二次终止性质[A];中国运筹学会第七届学术交流会论文集(下卷)[C];2004年
4 张静;尚学海;;一种新的非单调BFGS算法的全局收敛性[A];第十届中国青年信息与管理学者大会论文集[C];2008年
相关博士学位论文 前3条
1 刘陶文;BFGS方法及其在求解约束优化问题中的应用[D];湖南大学;2006年
2 李亮;大规模结构并行优化方法及其工程应用研究[D];西北工业大学;2014年
3 肖运海;求解大规模优化问题的几种方法[D];湖南大学;2007年
相关硕士学位论文 前10条
1 史战文;两种求解大型对称正定矩阵极大特征值问题的修正BFGS算法[D];河南大学;2017年
2 窦华丽;求解凸约束非线性单调方程组的BFGS方法[D];河南大学;2010年
3 李国平;扰动谱尺度BFGS算法及其收敛性质[D];湖南大学;2012年
4 侯亚亭;构建蛋白纤维分子结构的有限存储BFGS算法[D];曲阜师范大学;2013年
5 王艳霞;一类新的BFGS算法[D];内蒙古工业大学;2017年
6 张飞;基于新拟牛顿方程改进的一类BFGS算法及其收敛性分析[D];西安建筑科技大学;2017年
7 冯还涛;求解非线性无约束优化问题的修正BFGS方法[D];南京理工大学;2010年
8 陈奎林;一类改进的BFGS算法及其收敛性分析[D];重庆大学;2012年
9 袁功林;修改的BFGS方法在非线性对称方程组中的应用[D];广西大学;2004年
10 何伟;基于新拟牛顿方程的改进的BFGS方法[D];南京理工大学;2007年
本文编号:2200007
本文链接:https://www.wllwen.com/kejilunwen/yysx/2200007.html