辛正交Legendre多项式及其在波动方程中的应用
发布时间:2018-08-24 14:32
【摘要】:基于经典Legendre多项式和Hamilton算子的谱性质,首先导出一类辛正交的矩阵多项式,其次利用该辛正交多项式建立了源于波动方程的Hamilton系统的Legendre Tau方法,得出了相应Hamilton系统的谱数值解,最后证明了该数值解保持系统的能量守恒.
[Abstract]:Based on the spectral properties of classical Legendre polynomials and Hamilton operators, a class of symplectic orthogonal matrix polynomials is first derived, then the Legendre Tau method of Hamilton systems derived from wave equations is established, and the spectral numerical solutions of the corresponding Hamilton systems are obtained. Finally, it is proved that the numerical solution preserves the energy conservation of the system.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O174.14;O175
本文编号:2201105
[Abstract]:Based on the spectral properties of classical Legendre polynomials and Hamilton operators, a class of symplectic orthogonal matrix polynomials is first derived, then the Legendre Tau method of Hamilton systems derived from wave equations is established, and the spectral numerical solutions of the corresponding Hamilton systems are obtained. Finally, it is proved that the numerical solution preserves the energy conservation of the system.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O174.14;O175
【参考文献】
相关期刊论文 前5条
1 Alatancang;;Spectra of Off-diagonal Infinite-Dimensional Hamiltonian Operators and Their Applications to Plane Elasticity Problems[J];Communications in Theoretical Physics;2009年02期
2 汤琼;陈传淼;刘罗华;曹红萍;;线性哈密尔顿系统的m次连续有限元法[J];高等学校计算数学学报;2011年04期
3 汤琼;陈传淼;刘罗华;;哈密尔顿系统的有限元法[J];计算数学;2009年04期
4 秦孟兆;辛几何及计算哈密顿力学[J];力学与实践;1990年06期
5 周建方,卓家寿;弹性力学的 Hamilton 求解体系[J];水利水电科技进展;1998年05期
相关硕士学位论文 前2条
1 张赤东;基于Hamilton体系的弹性力学辛差分方法[D];河海大学;2004年
2 赵清华;弹性力学混合边界问题的辛差分格式[D];河海大学;2007年
,本文编号:2201105
本文链接:https://www.wllwen.com/kejilunwen/yysx/2201105.html