两类二元函数芽的一个共同性质和其亚标准形式
发布时间:2018-08-25 08:54
【摘要】:利用J.N.Mather有限决定性定理和光滑函数芽的右等价关系,给出了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,…,k)的两类二元函数芽f_i=x~3+∑_(i=4)~kp_i(x,y),f_2=y~3+∑_(i=4)~k=4q_i(x,y)(k≥5)的一个共同性质:若M_2~k銰M_2J(f_j)(j=1,2)且f_1,f_2的轨道切空间的余维分布均为c_i=2(i=4,5,…,k-1),则对这个i,p_i(x,y)中x~2y~(i-2),xy~(i-1),y~i的系数和q_i(x,y)中x~(i-2)y~2,x~(i-1)y,x~i的系数均为零.最后,利用该性质,给出了f_1,f_2和一类余维数为8的二元函数芽的亚标准形式.
[Abstract]:By using J.N.Mather 's finite determinacy theorem and the right equivalence relation of smooth function germs, we give a polynomial with arbitrary degree 4 to k degree homogeneous P _ S _ I (XN _ y) / Q _ I _ I (x ~ y). Two kinds of binary function buds f_i=x~3 鈭,
本文编号:2202383
[Abstract]:By using J.N.Mather 's finite determinacy theorem and the right equivalence relation of smooth function germs, we give a polynomial with arbitrary degree 4 to k degree homogeneous P _ S _ I (XN _ y) / Q _ I _ I (x ~ y). Two kinds of binary function buds f_i=x~3 鈭,
本文编号:2202383
本文链接:https://www.wllwen.com/kejilunwen/yysx/2202383.html