对于矩阵数据分类的双支持矩阵机
[Abstract]:Nowadays, Zhang Liang as a common form is more and more widely used in various fields. How to classify Zhang Liang data is an important research topic, such as face recognition, visual recognition, medical image and so on. Matrix, is a second-order Zhang Liang, can be used to build a vector and Zhang Liang between the bridge. High order Zhang Liang can also expand into matrix form, so how to classify matrix data has important significance. In this paper, a clever learning framework is proposed as an extension of the double support vector machine (DSVM). Different from the double support vector machine, the multi-rank multi-linear double support matrix classifier uses two pairs of projection matrices to construct a pair of functions. This pair of functions is used to establish a decision function. Compared with the method based on vector input, the method based on matrix can not only preserve the structure of matrix data, but also reduce the computational complexity. In addition, we add a regular term to improve the performance of multi-rank multi-linear bilinear support matrix classifier, and introduce a clever algorithm for multi-rank multi-linear bilinear support matrix classifier. Experimental results on the classification accuracy, convergence and computation time of different methods will be shown. The input of high dimensional matrix not only occupies a large amount of memory, but also needs a large amount of running memory in the process of calculation. In order to improve the ability of storing and computing the input of high-dimensional matrix, this paper improves the multi-rank and multi-linear bilinear support matrix classifier based on singular value decomposition (SVD). On the basis of multi-rank multi-linear bilinear support matrix classifier, a two-support matrix classifier based on singular value decomposition (SVD) is established. For matrix input, we define a matrix mapping function based on matrix singular value decomposition, which is used to deal with matrix input, reduce data dimension and form a new training set. By learning the new training set, the classification accuracy will increase and the training time will be reduced. Five groups of data sets are trained. Compared with other classification methods, the dual support matrix classifier based on singular value decomposition is an effective classifier.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O151.21;O183.2
【相似文献】
相关期刊论文 前10条
1 沈守枫;;低维非线性系统的一般多线性变量分离方法和局域激发模式[J];物理学报;2006年03期
2 陆善镇,燕敦验;多线性振荡积分的一个注记[J];数学学报;2001年05期
3 杜艳艳;刘官厅;韩飞;;(2+1)维Boiti-Leon-Pemponelli方程的多线性分离变量法[J];内蒙古师范大学学报(自然科学汉文版);2008年03期
4 包志华;斯仁道尔吉;包来友;;(2+1)维耗散长水波方程的一般多线性分离变量解[J];内蒙古师范大学学报(自然科学汉文版);2010年01期
5 王龙;多线性参数化区间系统的严格正实问题[J];中国科学E辑:技术科学;1998年05期
6 孙振东;;连续时间多线性动态系统的性能分析[J];控制理论与应用;2014年07期
7 薛丽梅;王会敏;李刚;;多线性位势型算子的双权弱型不等式[J];河北师范大学学报(自然科学版);2014年04期
8 陶双平;冯进喜;;一类多线性奇异积分的弱型估计[J];数学学报;2009年03期
9 张隽;谭喜玉;;KdV6方程的多线性分离变量解[J];浙江工业大学学报;2012年06期
10 钱涛;关于多线性奇异积分的估计[J];中国科学(A辑 数学 物理学 天文学 技术科学);1984年07期
相关博士学位论文 前1条
1 夏阿林;高维化学计量学方法的若干基础性研究以及在药物分析中的应用[D];湖南大学;2007年
相关硕士学位论文 前10条
1 金政;分段多线性支持张量机[D];华南理工大学;2015年
2 金芳婷;多线性分数次算子在非齐次空间上的有界性[D];江西师范大学;2015年
3 杜艳艳;非线性系统中的多线性分离变量法和局域激发模式[D];内蒙古师范大学;2008年
4 翟清;若干非线性系统的多线性分离变理解[D];宁波大学;2011年
5 来娴静;孤子系统的多线性变量分离及其局域激发研究[D];浙江师范大学;2005年
6 吴云频;一类多线性奇异积分的有界性的研究[D];宁波大学;2011年
7 包志华;几类非线性方程的多线性分离变量解[D];内蒙古师范大学;2010年
8 王会敏;多线性位势型算子的加权不等式[D];河北师范大学;2009年
9 于文新;多线性Marcinkiewicz算子有界性研究[D];长沙理工大学;2008年
10 申英;Littlewood-Paley算子生成的多线性交换子的有界性研究[D];长沙理工大学;2012年
,本文编号:2205758
本文链接:https://www.wllwen.com/kejilunwen/yysx/2205758.html