当前位置:主页 > 科技论文 > 数学论文 >

Courant代数胚与广义复几何

发布时间:2018-08-27 11:28
【摘要】:本文综述Courant代数胚的研究背景、发展历史、重要理论及其应用.本文回顾和介绍该领域中一些关键的发现和进展,并重点阐述Courant代数胚定义的来龙去脉,以及相应的Dirac结构、李双代数胚、Clifford构造、旋量表示、广义复几何以及正则Courant代数胚的理论框架和一些主要的结论.
[Abstract]:This paper reviews the research background, development history, important theories and applications of Courant algebraic embryos. Some key discoveries and developments in this field are reviewed and introduced. The origin and development of the definition of Courant algebraic embryos, as well as the corresponding Dirac structures, Lie bialgebraic embryos, Clifford constructions, screw representations, generalized complex geometry and canonical Co structures are emphasized. The theoretical framework and some main conclusions of urant algebras.
【作者单位】: 清华大学数学科学系;北京大学数学科学学院;Department
【基金】:国家自然科学基金(批准号:11471179和11471139)资助项目
【分类号】:O152.5


本文编号:2207137

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2207137.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d4f4a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com