超特殊Z-群的自同构群
发布时间:2018-08-30 10:50
【摘要】:确定了超特殊Z-群的自同构群.设G是超特殊Z-群,即G={(1 α_1 α_2···α_n α_(n+1) 0 1 0···0 α_(n+2) ···0 0 0 ··· 0 α_2n 0 0 0··· 1 α_(2n+1) 0 0 0···1 α_(2n+1) 0 0 0···0 1)|α_j∈Z,j=1,2,3,...,2n+1}Aut_cG是AutG中平凡作用在ζG上的自同构形成的正规子群,则AutG=Aut_cG×Z_2,且1→Z崴···崴Z}2N→Aut_cG→Sp(2n,Z)→1是正合列.
[Abstract]:The automorphism groups of super special Z- groups are determined. Let G be a super special Z- group, that is, G = {(1 伪 1 伪 2 伪 2 伪 n 1) 0 100 伪 _ (n 2) 0 000 伪 T 2n 1 伪 _ (2n 1) 0 001 伪 _ (2n 1) 0.001 伪 _ (2n 1) 0.001 伪 _ (2n 1) 1) A 伪 j 鈭,
本文编号:2212848
[Abstract]:The automorphism groups of super special Z- groups are determined. Let G be a super special Z- group, that is, G = {(1 伪 1 伪 2 伪 2 伪 n 1) 0 100 伪 _ (n 2) 0 000 伪 T 2n 1 伪 _ (2n 1) 0 001 伪 _ (2n 1) 0.001 伪 _ (2n 1) 0.001 伪 _ (2n 1) 1) A 伪 j 鈭,
本文编号:2212848
本文链接:https://www.wllwen.com/kejilunwen/yysx/2212848.html