当前位置:主页 > 科技论文 > 数学论文 >

随机常微分方程的二步方法及其数值分析

发布时间:2018-09-01 13:00
【摘要】:随机常微分方程已经广泛应用于金融系统、数量经济、控制系统、系统生物等研究领域.由于随机系统本身的复杂性,一般情况下很难得到方程解析解的显式表达式.因此,对随机常微分方程的数值方法进行研究就显得十分必要.本论文主要研究随机常微分方程的数值方法,提出分裂步二步Maruyama方法、全隐式二步Maruyama方法和全隐式二步Milstein方法,并分别分析相应数值方法的均方相容性、均方收敛性与均方线性稳定性.另外,提出数值求解带泊松跳的随机常微分方程的二步Maruyama方法,分析该算法的均方相容性、均方收敛性与均方线性稳定性.第一章,介绍随机常微分方程的基本理论,简单回顾随机常微分方程数值解法的发展历史与研究现状,并说明本文的主要研究内容和结果.第二章,简要介绍概率论中的一些基础知识,随机过程和随机积分的基本概念,以及Ito公式和Ito-Taylor展式的相关结论.第三章,提出数值求解随机常微分方程的分裂步二步Maruyama方法,分析方法的均方相容性、均方收敛性及均方线性稳定性,给出分裂步二步Adarms-Bashforth Maruya-ma方法和分裂步二步Adarms-Moulton Maruyama方法的均方线性稳定性区域,并通过数值算例验证算法的均方收敛性和均方稳定性的理论结果.第四章,提出数值求解随机常微分方程的全隐式二步Maruyama方法,分析其均方相容性、均方收敛性及均方线性稳定性,给出全隐式二步Adams-Bashforth Maruyama方法和全隐式二步Adams-Moulton Maruyama方法的均方线性稳定性区域.最后,通过数值算例验证该算法的均方收敛性和均方稳定性结果.第五章,提出数值求解随机常微分方程的全隐式二步Milstein方法,对该方法的均方相容性、均方收敛性及均方线性稳定性进行分析,给出全隐式二步Adams-Bashforth Milstein方法和全隐式二步Adams-Moulton Milstein方法的均方线性稳定性区域.数值例子表明理论结果的正确性.第六章,提出数值求解带泊松跳的随机常微分方程的二步Maruyama方法,分析该方法的均方相容性、均方收敛性及均方线性稳定性,研究二步Adams-Bashforth Maruya-ma 和二步 Adams-Moulton Maruyama 方法的均方线性稳定性区域.最后,通过数值例子验证该算法的均方收敛性和均方稳定性的理论结果.
[Abstract]:Stochastic ordinary differential equations have been widely used in the fields of financial system, quantity economy, control system, system biology and so on. Because of the complexity of the stochastic system itself, it is difficult to obtain the explicit expression of the analytic solution of the equation in general. Therefore, it is necessary to study the numerical method of stochastic ordinary differential equation. In this paper, the numerical methods of stochastic ordinary differential equations are studied. The split step two-step Maruyama method, the fully implicit two-step Maruyama method and the fully implicit two-step Milstein method are proposed, and the mean square compatibility of the corresponding numerical methods is analyzed respectively. Mean square convergence and mean square linear stability. In addition, a two-step Maruyama method for solving stochastic ordinary differential equations with Poisson hopping is presented. The mean square compatibility, mean square convergence and mean square linear stability of the algorithm are analyzed. In the first chapter, the basic theory of stochastic ordinary differential equation is introduced, and the development history and research status of numerical solution of stochastic ordinary differential equation are briefly reviewed, and the main contents and results of this paper are explained. In the second chapter, we briefly introduce some basic knowledge of probability theory, the basic concepts of stochastic process and stochastic integral, and the relevant conclusions of Ito formula and Ito-Taylor expansion. In chapter 3, a split step two-step Maruyama method for solving stochastic ordinary differential equations is presented. The mean square compatibility, mean square convergence and mean square linear stability of the method are analyzed. The mean square linear stability regions of split step two step Adarms-Bashforth Maruya-ma method and split step two step Adarms-Moulton Maruyama method are given, and the theoretical results of mean square convergence and mean square stability of the algorithm are verified by numerical examples. In chapter 4, a fully implicit two-step Maruyama method for solving stochastic ordinary differential equations is presented. The mean square compatibility, mean square convergence and mean square linear stability are analyzed. The mean square linear stability regions of the fully implicit two-step Adams-Bashforth Maruyama method and the fully implicit two-step Adams-Moulton Maruyama method are given. Finally, the mean square convergence and mean square stability of the algorithm are verified by numerical examples. In chapter 5, a fully implicit two-step Milstein method for solving stochastic ordinary differential equations is presented. The mean square compatibility, mean square convergence and mean square linear stability of the method are analyzed. The mean square linear stability regions of the fully implicit two-step Adams-Bashforth Milstein method and the fully implicit two-step Adams-Moulton Milstein method are given. Numerical examples show that the theoretical results are correct. In chapter 6, a two-step Maruyama method for solving stochastic ordinary differential equations with Poisson hopping is presented. The mean square compatibility, mean square convergence and mean square linear stability of the method are analyzed. The mean square linear stability region of two step Adams-Bashforth Maruya-ma and two step Adams-Moulton Maruyama methods is studied. Finally, a numerical example is given to verify the theoretical results of the mean square convergence and mean square stability of the algorithm.
【学位授予单位】:上海师范大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O241.81

【相似文献】

相关期刊论文 前10条

1 吴云章;“1”在常微分方程解题中的应用[J];高等数学研究;2003年02期

2 钟秀蓉;;本科自动化专业常微分方程教学之改革与实践[J];内江科技;2009年04期

3 王光辉;任秋萍;;对本科“常微分方程”课程教学模式的若干研究[J];黑龙江科技信息;2009年29期

4 肖勇;;常微分方程在数学建模中的应用[J];荆楚理工学院学报;2009年11期

5 魏章志;宁群;李耀红;;应用型本科院校《常微分方程》教学的几点思考[J];宿州学院学报;2010年02期

6 熊桂芳;;高职数学中常微分方程教学改革实践[J];科教文汇(下旬刊);2010年03期

7 方辉平;;常微分方程教学改革与实践[J];滁州学院学报;2010年02期

8 陈华喜;;关于应用型本科院校《常微分方程》课程教学改革的思考[J];通化师范学院学报;2011年02期

9 程国华;;常微分方程教学体系改革初探[J];科教文汇(下旬刊);2011年04期

10 王英霞;;常微分方程在数学建模中的应用[J];才智;2011年12期

相关会议论文 前2条

1 廉海荣;赵俊芳;褚宝增;;在“常微分方程”教学中融入数学建模思想的探讨[A];城市空间结构理论与资源型城市转型研究——中国科协第224次青年科学家论坛论文集[C];2010年

2 鲍四元;;分数阶常微分方程的精细积分法[A];中国力学大会——2013论文摘要集[C];2013年

相关博士学位论文 前9条

1 任全伟;随机常微分方程的二步方法及其数值分析[D];上海师范大学;2017年

2 任瑞芳;常微分方程理论的形成[D];西北大学;2008年

3 吴晶雯;[D];上海师范大学;2015年

4 戴勇鸣;Obrechkoff方法在求解常微分方程振荡、刚性问题中的应用研究[D];上海大学;2006年

5 张兴秋;非线性奇异常微分方程的若干问题[D];山东大学;2006年

6 张荣华;神经信息传导的电路模型[D];天津大学;2010年

7 陈旭梅;Filippov-型常微分方程和随机微分方程的实用稳定性及数值计算[D];吉林大学;2009年

8 王鹏;随机常微分方程数值分析中的若干方法[D];吉林大学;2008年

9 宋文晶;具积分初(边)值条件的几类微分方程(组)解的研究[D];吉林大学;2011年

相关硕士学位论文 前10条

1 刘娟;ODEs系统的快速求解及预处理技术[D];电子科技大学;2015年

2 魏婷婷;两类非自治常微分方程的平均化[D];西北师范大学;2015年

3 孙晓辉;常微分方程在数学建模的应用[D];吉林大学;2009年

4 方芳;常微分方程理论在数学建模中的简单应用[D];安徽大学;2010年

5 孙礼俊;常微分方程的有限差分方法及其简单应用[D];安徽大学;2010年

6 王一鸣;基于LS-SVM的常微分方程求解[D];天津大学;2014年

7 史长花;一类具有Ambrosetti-Rabinowitz型超二次位势的四阶常微分方程周期解研究[D];中央民族大学;2010年

8 王龙;两类常微分方程非局部问题的研究[D];山东师范大学;2012年

9 韩艳凌;三阶常微分方程的某些非线性特征值问题的正解[D];辽宁师范大学;2008年

10 吴海辉;关于几类常微分方程解的性态的研究[D];福州大学;2006年



本文编号:2217272

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2217272.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户18d6e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com