高精度紧致格式在水沙运移数值模拟中的应用
[Abstract]:Convection-diffusion equation is a kind of motion equation which can be used to describe many physical phenomena such as river pollution, air pollution, pollutant concentration, fluid flow and heat conduction. There are many methods for solving such equations, such as finite element method, finite difference method, finite volume method and so on. One of the most common numerical methods is the finite difference method. Because it is easy to construct a compact scheme with high accuracy by using fewer mesh points, the difference scheme is constructed in the case of uniform mesh and non-uniform mesh respectively, and the applicability and accuracy of the scheme are verified. Especially in the large gradient, boundary layer and other problems show some advantages. In this paper, the problem of convection-diffusion equation is analyzed. Firstly, the compact difference scheme with high precision is introduced. After introducing the mesh generation function, the scheme is constructed under uniform and non-uniform meshes, respectively. The applicability and accuracy of the scheme are verified by numerical examples. Secondly, the high precision compact scheme is reconstructed based on the Pade' approximation Richardson extrapolation method, which not only obtains higher calculation accuracy, but also the boundary conditions are easy to deal with. The stability and accuracy of the calculation results are also guaranteed, and the computational complexity is saved. Finally, the high precision compact difference scheme is applied to the numerical simulation of water and sediment transport. In order to carry on the numerical simulation, this paper only selects the Ningxia Yellow River Daliushu River in recent years to carry on the comparison analysis with it, thus verifies the practicability and the accuracy of the method.
【学位授予单位】:北方民族大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.8
【参考文献】
相关期刊论文 前10条
1 景何仿;李义天;李春光;;Numerical study of the flow in the Yellow River with non-monotonous banks[J];Journal of Hydrodynamics;2016年01期
2 王慧蓉;;求解对流扩散方程的紧致差分方法[J];山西师范大学学报(自然科学版);2015年03期
3 王慧蓉;;求解对流扩散方程的紧致pade'逼近差分格式[J];数学的实践与认识;2015年10期
4 尹治丹;陈建华;葛永斌;;求解二维扩散方程的一种高精度紧致差分格式[J];四川师范大学学报(自然科学版);2015年03期
5 黄雪芳;郭锐;葛永斌;;一维非定常对流扩散方程非均匀网格上的高精度紧致差分格式[J];工程数学学报;2014年03期
6 田芳;;非均匀网格上三维对流扩散方程高精度紧致差分方法[J];宁夏大学学报(自然科学版);2012年02期
7 肖建英;刘小华;李永涛;;非定常对流扩散方程的高阶差分格式[J];西南石油大学学报(自然科学版);2012年03期
8 魏剑英;;二维定常对流扩散方程的一种高精度紧致差分方法[J];重庆理工大学学报(自然科学);2012年02期
9 王峰峰;王彩华;齐海涛;;二维对流扩散方程的紧致差分格式[J];天津师范大学学报(自然科学版);2011年01期
10 ;Numerical research on flow and thermal transport in cooling pool of electrical power station using three depth-averaged turbulence models[J];Water Science and Engineering;2009年03期
,本文编号:2217870
本文链接:https://www.wllwen.com/kejilunwen/yysx/2217870.html