当前位置:主页 > 科技论文 > 数学论文 >

伪补分配格的同余理想

发布时间:2018-09-03 10:05
【摘要】:格是序结构和代数结构的结合体.从布尔格在命题演算和开关理论中的重要作用可以看出格的重要.近年来由于有序理论在组合数学、Fuzzy数学中的广泛应用,使得格理论逐步发展成为现代数学的重要分支之一.伪补是格中补元的延伸,将格中补元满足的∧、∨两个运算减为一个运算∧就得到伪补.伪补的重要性在于:(1)有了伪补,原来不存在补元的元素却存在伪补元,这就扩大了格中元素存在补元的范围;(2)伪补的引入可提升格代数结构,即在代数结构上加上伪补可产生新的代数结构.将伪补融入格即成为伪补格,与一般的格有所不同,例如,一般格上的同余关系是对∧,∨具有替换性质,而伪补格上的同余关系则需要对∧,∨,*都具有替换性质,介于伪补的重要性,伪补格也成为人们热议的课题.理想在众多代数结构中都占据着主导地位,伪补格上的理想近年来是人们竞相追逐的研究课题.将伪补融入格理想,会衍生出新的理想,同余理想就是其中之一,同余理想是认识伪补格和同余关系的重要工具,例如,以同余理想为载体,人们搞清楚了伪补MS代数的内部结构,这为进一步研究伪补代数提供了理论支持.本文在前人研究的基础上,对伪补分配格上的同余理想做了进一步的研究,得出一些有意义的结论.文章介绍了伪补分配格上同余理想的性质以及理想成为同余理想的条件,关于特殊的同余理想:O-理想,给出了它的性质和具体表示形式,并用自己的方法或改进的方法予以证明.文章主要分为三部分:第一部分:预备知识.介绍了伪补分配格上同余理想的意义、研究现状及创新点;给出了研究伪补分配格上的同余理想所用到的概念、引理及结果,其中包括:格、格理想、格同余关系、伪补格、同余理想、O-理想等定义和相关结论.第二部分:同余理想的性质.根据*-同余关系的定义,说明了格同余关系成为*-同余关系的条件,对以同余理想为同余类的最小的*-同余关系,给出了具体表达形式;阐述了伪补分配格上的同余理想的性质,根据性质得出伪补格中元素所满足的若干格等式.第三部分:理想成为同余理想条件.介绍了伪补分配格上理想成为同余理想的若干充要条件和等价条件以及理想、素理想和主理想成为同余理想的条件,说明了主理想作为同余理想所具有的性质;给出了由同余理想与余核滤子相互寻找的方法;针对特殊的同余理想:O-理想,讨论了它的性质和理想成为O -理想的条件;并给出几种具体的O -理想.
[Abstract]:Lattice is a combination of ordered structure and algebraic structure. From the important role of Burg in proposition calculus and switch theory, we can see the importance of lattice. In recent years, due to the extensive application of order theory in combinatorial mathematics and fuzzy mathematics, lattice theory has gradually developed into one of the important branches of modern mathematics. Pseudo complement is an extension of complement in lattices. If two operations of a complement satisfying in a lattice are reduced to one operation, a pseudo complement can be obtained. The importance of pseudo complement is as follows: (1) with pseudo complement, the elements that do not have complement have pseudo complement, which expands the scope of complement in lattice. (2) the introduction of pseudo complement can enhance the algebraic structure of lattice. That is to say, adding pseudo complement to algebraic structure can produce new algebraic structure. It is different from the general lattice that the pseudo-complement is merged into the lattice, for example, the congruence relation on the general lattice has the property of substitution for the 位 and the Timov, while the congruence relation on the pseudo-complement lattice needs to have the property of substitution for all the congruences on the pseudo-complement lattice, and the congruence relation on the pseudo-complement lattice needs to have the property of substitution for all of them. Because of the importance of pseudo complement, pseudo complement lattice has become a hot topic. Ideals occupy a dominant position in many algebraic structures. In recent years, ideals on pseudo-complement lattices have been pursued by people. One of them is congruence ideal, which is an important tool for understanding pseudo-complement lattice and congruence relations. For example, congruence ideal is the carrier of congruence ideal. The internal structure of pseudo-complement MS algebras has been clarified, which provides theoretical support for further study of pseudo-complement algebras. On the basis of previous studies, this paper makes a further study of congruence ideals on pseudo-complementary distributive lattices, and draws some meaningful conclusions. In this paper, we introduce the properties of congruence ideals on pseudo-complementary distributive lattices and the conditions under which ideals become congruence ideals. And with their own method or improved method to prove. The article is divided into three parts: the first part: preparatory knowledge. This paper introduces the significance of congruence ideals on pseudo-complementary distributive lattices, the present research situation and innovation points, and gives the concepts, Lemma and results used to study congruence ideals on pseudo-complementary distributive lattices, including: lattice, lattice ideals, lattice congruence relations, pseudo-complement lattices. The definition and related conclusions of congruence ideals. Part two: the properties of congruence ideals. According to the definition of the lattice-congruence relation, this paper explains the condition that the lattice congruence relation becomes the lattice-congruence relation, and gives the concrete expression form of the minimal congruence relation in which the ideal of congruence is regarded as the class of congruence. The properties of congruence ideals on pseudo-complement distributive lattices are expounded. According to the properties, some lattice equations satisfied by elements in pseudo-complement lattices are obtained. The third part: ideal becomes congruence ideal condition. This paper introduces some necessary and sufficient conditions for an ideal on a pseudo-complementary distributive lattice to be a congruence ideal and some equivalent conditions, as well as the conditions for a prime ideal and a principal ideal to be a congruence ideal, and explains the properties of the principal ideal as a congruence ideal. This paper gives the method of searching by congruence ideal and conuclear filter, discusses its properties and the conditions under which the ideal becomes O-ideal for the special congruence ideal: O- ideal, and gives several concrete O-ideals.
【学位授予单位】:内蒙古工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O153.1

【参考文献】

相关期刊论文 前10条

1 赵秀兰;陈丽娟;;双重Stone代数的核理想[J];四川理工学院学报(自然科学版);2017年01期

2 赵秀兰;史西专;;半伪补MS-代数的理想及同余关系[J];模糊系统与数学;2016年02期

3 赵秀兰;刘洁;;伪补MS-代数的核理想与同余关系[J];江西师范大学学报(自然科学版);2014年06期

4 祝祯祯;卢涛;;伪补格上的弱Way-below关系[J];洛阳师范学院学报;2014年05期

5 谢敏;罗从文;;对称扩张伪补分配格的同余关系[J];模糊系统与数学;2013年06期

6 王雷波;方捷;;几乎伪补格的核理想与W-理想[J];模糊系统与数学;2012年01期

7 王尊全;;PMS-代数的同余理想[J];华中师范大学学报(自然科学版);2006年01期

8 黎爱平;分配P-代数的O-理想与核理想[J];上饶师范学院学报(自然科学版);2005年03期

9 罗从文;伪补MS代数的主同余关系[J];应用数学;2004年04期

10 王尊全;伪补分配格的同余理想与同余关系[J];纯粹数学与应用数学;2001年04期

相关硕士学位论文 前3条

1 巩博儒;格及其在密码学中的应用[D];复旦大学;2013年

2 王钊;拟伪补Ockham代数的同余与核理想[D];广东技术师范学院;2013年

3 杨婷;拟伪补MS-代数[D];广东技术师范学院;2012年



本文编号:2219657

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2219657.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户babb9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com