抽样技术在复杂网络中的应用研究
[Abstract]:In recent years, the research of complex network has been highly concerned by many scholars because of its wide application background. People have deeply studied the topology commonness and mathematical model of many practical networks. However, the actual network is often large, limited by technology and cost, so it is difficult to obtain the complete information of the network. Many empirical studies of complex networks are actually based on incomplete network data. Therefore, how to reasonably sample the network and obtain a better sampling network to accurately infer the nature of the complete network is an important problem in the study of complex networks. The network sampling method design and sampling effect analysis under big data has very important value. In this paper, different sampling methods are used to sample three different types of complex networks, and the topological characteristic quantities of the sample networks obtained by different sampling methods are calculated, and the estimation results of the initial values of the samples are compared. A sampling method suitable for different network topology property estimation is summarized. The first part of this paper (1) is the background research. It introduces the importance and necessity of complex network sampling in the background of the present era, and analyzes the current research results and present situation in the field of complex network sampling at home and abroad. The purpose of this research is expounded. The second part (2) is the theoretical analysis. Firstly, the theoretical basis of complex network sampling is introduced, including the historical development process of complex network, the characteristics and construction methods of classical complex network model, and the introduction of common network topology characteristic quantity. Then it introduces the sampling ideas of three common sampling methods and the two-stage sampling method based on the combination of snowball sampling method and complete random sampling method. The third part (3-5) is the application of the method, which applies the complete random sampling method, random walk sampling method, snowball sampling method and two-stage sampling method respectively in BA scale free network and WS small world network with different sampling rates. Sampling is carried out in the EU mail communication network. The topological characteristic quantity is calculated by using the obtained sample network and its estimation effect on the whole is compared. The characteristics of different sampling methods and their advantages and disadvantages in estimating different topological properties in each network are summarized. The last part (6) is a summary. Combined with the above analysis, the sampling methods suitable for different network topology properties estimation are listed. At the end of this paper, the innovations and shortcomings of the paper are pointed out.
【学位授予单位】:桂林理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157.5
【相似文献】
相关期刊论文 前10条
1 曹红星;谈谈目前型号产品试验中几种不合理的抽样方法[J];质量与可靠性;1992年05期
2 王国庆,王广金,,郝向峰;抽样方法运作条件刍议[J];宁夏农学院学报;1994年04期
3 雷艳;窦立军;;混凝土结构质量检验抽样方法的研究[J];吉林建筑工程学院学报;2009年04期
4 刘兴远;浅谈抽样方法的误用[J];中国统计;1994年09期
5 李坤;;常用抽样方法概述[J];市场研究;2012年11期
6 谢中枢;建议采用定户亩产比率推算法代替现行农产量抽样方法[J];统计;1988年10期
7 王文奎;基于稳定生产状态下的机电产品检验抽样方法[J];机械设计与研究;2001年02期
8 王文奎;相同生产条件下机电产品检验的抽样方法与实施程序[J];组合机床与自动化加工技术;2002年09期
9 常洪;耿社民;武彬;李写一;陈幼春;;中国黄牛品种遗传检测抽样方法的研究[J];黄牛杂志;1989年03期
10 李铁柱,陈伯显;相关抽样方法在中子、光子输运中的应用[J];核电子学与探测技术;2002年04期
相关会议论文 前4条
1 宋彦辉;;浅谈食品卫生检验样品的抽样方法及应用[A];科技创新与节能减排——吉林省第五届科学技术学术年会论文集(下册)[C];2008年
2 杨立江;高毅勤;;选择性温度积分增强抽样方法及其在生物分子模拟中的应用[A];第一届全国生物物理化学会议暨生物物理化学发展战略研讨会论文摘要集[C];2010年
3 Ling-Yau Chan;;A new statistical distribution for group-by-group counting[A];2007均匀试验设计学术交流会论文集[C];2007年
4 吴全;裴志远;;我国农情遥感监测中的抽样方法与问题[A];2008年中国农业资源与区划学会学术年会论文集[C];2008年
相关重要报纸文章 前1条
1 中国WTO/TBT-SPS通报咨询中心供稿;欧盟拟修改食品内黄曲霉毒素抽样方法[N];中国国门时报;2009年
相关硕士学位论文 前8条
1 苏健;抽样技术在复杂网络中的应用研究[D];桂林理工大学;2015年
2 徐枫;普通高中学生对抽样方法理解水平的研究[D];东北师范大学;2009年
3 杨晓花;有序抽样方法及此方法下的参数估计[D];华中科技大学;2005年
4 赵静;关于两条裂缝重构的线性抽样方法的数学基础研究[D];华中师范大学;2012年
5 金桂芹;基于Monte Carlo抽样方法的随机离散化和EM算法在分组数据中的应用[D];东北师范大学;2005年
6 郭芸;关于计算正规化常数的Monte Carlo模拟方法的讨论[D];苏州大学;2004年
7 王璐;序贯蒙特卡罗中的带限制重抽样方法[D];厦门大学;2014年
8 罗鹏;小概率抽样网络稳定性研究[D];哈尔滨工业大学;2014年
本文编号:2229189
本文链接:https://www.wllwen.com/kejilunwen/yysx/2229189.html