Base-Countably弱θ加细空间和Nearly-Meso紧空间的性质研究
发布时间:2018-09-08 06:42
【摘要】:本文引入了 Base-Countably弱θ加细空间和Nearly-Meso紧空间,并且研究了这两类空间的闭遗传性、Tychonoff乘积性和映射性质。获得了如下主要结果:(1 ) {Fi}i∈N = ∪n∈N An是X的闭覆盖,对任意x∈X存在n∈N,使得1≤ord(x,An)(?) ω ,如果任意一闭集Fi(i∈N)都是相对于X的Base-Countably弱θ加细空间,则X是Base-Countably弱θ加细空间。(2 ) f : X → Y 是 Base-Countably 弱 θ 加细映射,ω(X)≥ ω(Y),如果 Y 是正则的Base-Countably弱θ加细空间,那么x是Base-Countably弱θ加细空间。(3 ) Nearly-Meso紧空间的闭子集是Nearly-Meso紧空间。(4 ) X是Nearly-Meso紧空间当且仅当x的任意一单调开覆盖U ,存在x的稠密子集D和U的一开加细U ',使得D中任意一紧集K,有(U')K是一个有限集。(5) X=Πα∈ΛXα是|Λ|-仿紧空间,那么X是Nearly-Meso紧空间当且仅当任α∈A意F∈[Λ](?)ω,Πα∈ΛXα是Nearly-Meso紧空间。(6)Nearly-Meso紧空间X是T3空间并且也是可数紧空间,则它是紧空间。
[Abstract]:In this paper, we introduce Base-Countably weak 胃 fineness space and Nearly-Meso compact space, and study the closed hereditary property and mapping property of these two spaces. The main results are as follows: (1) {Fi} I 鈭,
本文编号:2229680
[Abstract]:In this paper, we introduce Base-Countably weak 胃 fineness space and Nearly-Meso compact space, and study the closed hereditary property and mapping property of these two spaces. The main results are as follows: (1) {Fi} I 鈭,
本文编号:2229680
本文链接:https://www.wllwen.com/kejilunwen/yysx/2229680.html