当前位置:主页 > 科技论文 > 数学论文 >

几类分数阶微分方程解的存在性和伪渐近周期性研究

发布时间:2018-10-09 17:45
【摘要】:近年来,分数阶微分方程在许多学科领域都起到了至关重要的作用,如生物学、化学、工程学、物理学等等,从而吸引了越来越多的学者参与到该问题的研究中来,并取得了许多成果.本文主要研究了一类分数阶微分方程的边值问题和一类分数阶脉冲微分方程的初值问题以及一类分数阶微分方程伪渐近周期解的存在性.首先,我们考虑以下非线性多基点分数阶脉冲微分方程的三点边值问题,其中 α ∈(1,2),β,γ2 ∈(0,1),α-∈(1,2).cD 表示基点为 t = tk(k = 1,2,….,m)的Caputo分数阶导数.Ik,Ik ∈ C(R,R),R表示实数空间.{tk}满足0 = t0t1…tmtm+1 = T,△x(tk)表示函数x在tk处的跳跃,△x(tk)=x(tk+)-(tk-),其中x(tk+),x(tk-)分别表示x(t)在t=tk处的右极限和左极限.△x'(tk)的意义与Ax(t)类似.我们利用Schauder不动点定理研究了该问题解的存在性.其次,我们考虑以下带非局部延迟的分数阶脉冲微分方程,其中δ,T0,cD*α表示基点为t=tk(k = 1,2,….,m)的Caputo分数阶导数;即对所有的t ∈(tk,tk+1],cD*α|(tk,tk+1]u(t)=c Dlkαku(t).A:D(A)(?)X → X 是复 Banach空间X中的解析预解族{Sα(t)}t≥0的生成元.后面我们将给出f:J×D×X→X的具体假设.此处D={ψ:[-0]→ X,ψ(s)除有限个点外处处连续,ψ(s+)存在且ψ(s-)= ψ(s)}.g:→ ∈ D.{tk} 满足 0 = t0t1…tptp+1 =T,Ik:X → X(k = 1,2,…,p)是脉冲函数,△x(tk)表示函数x在tk处的跳跃,△x(tk)= x(tk+)-x(tk-),其中x(tk+),x(tk-)分别表示x在tk处的右极限和左极限.对任意定义在区间[-δ,T]\{t1,t2 …,tp}上的连续函数x和任意t ∈[0,T],我们用xt表示D中的元素,且定义如下:对(?)∈[-δ,0,,x(((?))=x(t+(?).最后,我们考虑以下Banach空间X上的分数阶微分方程初值问题,其中q ∈(0,1),cD0q+表示Caputo分数阶导数,A是Banach空间X中的闭线性算子.我们利用算子半群理论和压缩映射原理讨论了该问题的伪渐近周期性解.
[Abstract]:In recent years, fractional differential equations have played an important role in many disciplines, such as biology, chemistry, engineering, physics and so on, thus attracting more and more scholars to participate in the study of this problem. Many achievements have been made. In this paper, the existence of pseudo-asymptotic periodic solutions for a class of fractional differential equations and a class of fractional impulsive differential equations are studied. First of all, we consider the following three point boundary value problems for nonlinear fractional impulsive differential equations of multiple basis points, where 伪 鈭,

本文编号:2260204

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2260204.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户613b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com