若干运算图的倍乘赋权Harary指标(英文)
发布时间:2018-10-12 07:08
【摘要】:ALIZADEH等近期提出了一个修正的Harary指标,即顶点对的贡献被赋予其度的乘积.其指标被称为倍乘赋权Harary指标,定义为H_M(G)=∑u≠vδ_G(u)δ_G(v)/d_G(u,v),其中,δ_G(u)表示顶点u在图G中的度,d_G(u,v)表示2个顶点u和v在图G中的距离.给出了张量积G×K_r,强积G■K_r,圈积G_1oG_2的倍乘赋权Harary指标值的精确计算公式,这些公式与图的其他不变量(如倍加赋权Harary指标、Harary指标、第1类和第2类Zagreb指标、第1类和第2类反Zagreb指标)有关.此外,利用所得结果计算了开栅栏与闭栅栏的倍乘赋权Harary指标.
[Abstract]:ALIZADEH et al recently proposed a modified Harary index, that is, the contribution of vertex pairs is given the product of its degree. Its index is called multiplicative weighted Harary index, and it is defined as Harary (G) = 鈭,
本文编号:2265230
[Abstract]:ALIZADEH et al recently proposed a modified Harary index, that is, the contribution of vertex pairs is given the product of its degree. Its index is called multiplicative weighted Harary index, and it is defined as Harary (G) = 鈭,
本文编号:2265230
本文链接:https://www.wllwen.com/kejilunwen/yysx/2265230.html