轨形Gromov-Witten不变量沿光滑点的加权涨开公式
发布时间:2018-10-14 17:27
【摘要】:本文考虑,当一个紧辛轨形群胚(X,ω)沿着光滑点作加权涨开时,它的形如α_1,…,α_m,[pt]_(g,A)~X的轨形Gromov-Witten不变量的变化公式,其中[pt]∈H_(dR)~(2n)(X)是生成元,dimX=2n.我们证明了对于非零A∈H_2(|X|,Z),α_1,…,α_m,[pt]_(g,A)~X={p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_1,pl(A)-e’)~xdimX=4,g≥0,∑((-1)g_1·2)/(2g_1+2)!p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_2,pl(A)-e’)~xdimX=6,g≥0,p~*a_1,...,p~*a_m,1_x_((-1/a_1))_(g_1,pl(A)-e’)~xdimX≥8,g=0其中x是X沿一光滑点的权α=(α_1,…,α_n)的加权涨开,且α_1≥α_i,2≤i≤n.
[Abstract]:In this paper, we consider that when a compact symplectic orbital group (X, 蠅) is weighted to open along a smooth point, its shape is like 伪 _ 1, 鈥,
本文编号:2271124
[Abstract]:In this paper, we consider that when a compact symplectic orbital group (X, 蠅) is weighted to open along a smooth point, its shape is like 伪 _ 1, 鈥,
本文编号:2271124
本文链接:https://www.wllwen.com/kejilunwen/yysx/2271124.html