关于紧算子的奇异值不等式和可测算子的范数不等式的研究
[Abstract]:Operator theory plays an important role in mathematics and other sciences and has wide applications. The bounded linear operator theory on Hilbert space and Banach space is the basis of operator theory and operator algebra. Compact operators and measurable operators are two kinds of important operators. The singular value of compact operator is one of the hotspots in operator theory. Non-commutative Lp space is an important part of functional analysis. The study of estimators and their norm inequalities is one of the important research fields of operator theory. In recent years, many scholars have made extensive research on the singular values and norms of compact operators and estimators, and have made a lot of achievements. In this paper, the singular value inequalities of compact operators and the norm inequalities of estimators are further studied by means of operator theory and related knowledge and techniques of operator algebra. In this paper, three kinds of problems are studied. One is to study singular value inequalities of compact operators on Hilbert spaces by using the technique of partition matrix of operators. Second, by using the properties of von Neumann algebra, we study some properties of noncommutative LNP spaces. Thirdly, by using the properties of measurable subunits on von Neumann algebra M, the norm inequality of measurable subunits on M is studied. The main content of this paper is divided into four parts. The first part introduces the functional analysis, the origin and development of operator theory and operator algebra, then introduces the research status of compact operators and measurable operators at home and abroad, and finally introduces the contents of this paper. Objective and related preparatory knowledge. In the second part, the singular value inequalities of compact operators on Hilbert spaces are studied. Firstly, some related concepts and properties are introduced, then some singular value inequalities of compact operators are obtained by using the technique of partition matrix of operators and the properties of compact operators. In the third part, by using the properties of von Neumann algebra, we study some properties of noncommutative LNP spaces. In the fourth part, we first introduce the norm of the estimator and its properties, then we study a series of norm inequalities, and finally prove the equivalence of the singular value inequalities of several estimators.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O177
【参考文献】
相关期刊论文 前10条
1 李亚亚;王昌;;紧算子理论成因探析[J];自然辩证法研究;2014年12期
2 Tulenov K;Kanguzhin B E;Mamaeva V;;τ-可测算子在非交换L_p范数下平行四边形公式(英文)[J];新疆大学学报(自然科学版);2012年04期
3 桂楚;周其生;;关于交换子奇异值不等式的几个结论[J];安庆师范学院学报(自然科学版);2011年03期
4 李清;;初等算子的奇异值不等式研究[J];重庆文理学院学报(自然科学版);2010年05期
5 王运霞;周佳;吴田峰;;τ-可测正算子生成的交换子的若干不等式[J];应用泛函分析学报;2010年01期
6 马伟;;一类初等算子的范数等式和奇异值不等式[J];黑龙江科技学院学报;2010年01期
7 周佳;王运霞;吴田峰;;τ-可测算子A*XB的一个Schwarz不等式(英文)[J];新疆大学学报(自然科学版);2009年01期
8 刘晓冀;;关于矩阵的奇异值偏序[J];数学的实践与认识;2008年02期
9 波拉提汗;吐尔德别克;;关于换位子范数的若干不等式(英文)[J];应用泛函分析学报;2007年01期
10 方莉;王洪涛;白维祖;;关于算子谱半径与范数的若干不等式[J];西北大学学报(自然科学版);2007年01期
相关博士学位论文 前1条
1 邹黎敏;算子L(?)wner偏序与矩阵奇异值不等式[D];重庆大学;2014年
相关硕士学位论文 前6条
1 段光才;几类算子不等式的研究[D];河南师范大学;2014年
2 师光华;几类算子不等式的研究[D];河南师范大学;2012年
3 雷阳;关于Hilbert空间上的算子不等式及相关问题的研究[D];东华大学;2010年
4 周佳;非交换Banach函数空间的若干不等式[D];新疆大学;2008年
5 连铁艳;关于若干算子不等式的研究及应用[D];陕西师范大学;2005年
6 庞永锋;关于算子偏序及算子不等式的若干研究[D];陕西师范大学;2004年
,本文编号:2282236
本文链接:https://www.wllwen.com/kejilunwen/yysx/2282236.html