两类广义多乘积规划问题的优化算法
[Abstract]:As an important optimization problem, non-convex programming problem can be widely used in many important fields, such as economy and finance, information technology, industrial manufacturing and so on. In general, there are many non-global optimal local optimal solutions for this kind of problems, so it is very difficult to find their global optimal solutions. Because of the wide application of non-convex optimization problem in real life, more and more researchers pay attention to it in recent years, and some optimization methods have been proposed one after another. In this paper, two kinds of generalized multi-product programming problems in non-convex optimization problems are proposed. Compared with the existing methods, the proposed branch-and-bound algorithm and iterative algorithm not only guarantee the quality of the optimal solution, but also greatly improve its execution efficiency. The main contents are as follows: in the first chapter, the optimization model studied in this paper is given. Secondly, the application background, theoretical significance and current research work of the optimization problem are briefly introduced. Finally, the main work of this paper is presented. In chapter 2, according to the characteristics of generalized linear multiple product optimization problem, a new branch and bound algorithm is proposed. First, the equivalent problem of the original problem is obtained by introducing variables, and then the equivalent problem is transformed into a convex programming problem by using convex relaxation technique. Then a series of convex programming problems are solved based on a new branching rule to obtain the global optimal solution of the original problem. Finally, the global convergence of the algorithm is proved theoretically. Numerical results show that this algorithm has some advantages in solving generalized linear multiple product programming problems. Chapter 3 An iterative algorithm is proposed for generalized polynomial product optimization. The generalized geometric programming problem equivalent to the original problem is obtained by introducing variables, and then the generalized geometric programming problem is transformed into a standard geometric programming form by using the arithmetic-geometric mean inequality and penalty function. Then the optimal solution of the original problem is obtained by solving a series of standard geometric programming problems. Finally, the convergence of the iterative algorithm is given. Numerical results show that the algorithm is effective and feasible.
【学位授予单位】:河南师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O221
【相似文献】
相关期刊论文 前10条
1 毕予华;广义几何规划最优解的必要条件[J];许昌学院学报;2003年02期
2 隋允康,耿树森;广义几何规划二阶缩并的原算法及其在结构优化中的应用*[J];计算结构力学及其应用;1985年01期
3 乔立南;孙国正;;广义几何规划在起重机结构优化设计中的应用[J];武汉水运工程学院学报;1985年02期
4 隋允康,由衷;广义几何规划的完全二阶原算法[J];计算结构力学及其应用;1988年04期
5 张可村,王燕军;混合约束下广义几何规划的一种全局收敛算法[J];计算数学;2002年01期
6 王燕军,张可村;广义几何规划的压缩信赖域算法[J];应用数学学报;2004年03期
7 焦红伟;任勤;;求广义几何规划全局解的近似算法[J];河南师范大学学报(自然科学版);2007年03期
8 曹香莲;李灿;;广义几何规划的一类全局收敛算法[J];成都大学学报(自然科学版);2010年03期
9 景书杰;韩学锋;;无约束广义几何规划的一种具有全局收敛性的线性松弛方法[J];河南理工大学学报(自然科学版);2011年01期
10 靳利;刘慧芳;裴永刚;;带自由变量的广义几何规划全局求解的新算法[J];数学的实践与认识;2012年12期
相关会议论文 前2条
1 党亚峥;王科峰;景书杰;;广义几何规划的压缩共轭梯度路径信赖域算法[A];中国运筹学会第九届学术交流会论文集[C];2008年
2 张可村;王燕军;;混合约束下广义几何规划的一种全局收敛算法[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
相关博士学位论文 前3条
1 夏颖;WLAN室内半监督定位及指纹更新算法研究[D];哈尔滨工业大学;2016年
2 戴震龙;几类问题基于自然边界归化的算法研究[D];南京师范大学;2017年
3 吴珊珊;数据流频繁项挖掘及相关性分析算法的研究[D];浙江大学;2017年
相关硕士学位论文 前10条
1 韦阳阳;两类广义多乘积规划问题的优化算法[D];河南师范大学;2017年
2 李晓萍;有约束条件优化问题的MM算法[D];兰州大学;2017年
3 张晓丹;WSN中基于改进粒子群优化算法的分簇拓扑算法研究[D];郑州大学;2017年
4 杜仲平;基于嵌入式的婴儿哭声报警算法研究[D];天津大学;2016年
5 马霜逊;基于标签传播的PU学习算法研究[D];兰州大学;2017年
6 韩学锋;广义几何规划理论算法研究[D];河南理工大学;2011年
7 金花;解无约束广义几何规划[D];南京师范大学;2005年
8 王燕;广义几何规划问题的几个有效算法[D];南京师范大学;2007年
9 马琳;广义几何规划的全局优化算法研究[D];重庆大学;2013年
10 曾凡文;求解广义几何规划问题的两种全局优化方法[D];河南师范大学;2011年
,本文编号:2288048
本文链接:https://www.wllwen.com/kejilunwen/yysx/2288048.html