求解鞍点系统的一类松弛预处理子
发布时间:2018-10-22 18:51
【摘要】:具有鞍点结构的大规模稀疏线性系统广泛来源于流体力学,约束优化控制,结构力学,线性规划,电路设计等诸多应用领域,其快速解法是近几年研究的热点之一.本文将正则化的思想运用到求解非对称鞍点系统的SIMPLE-like预处理子上[Z.-Z.Liang,G.-F.Zhang,J.Comput.Appl.Math.,302(2016)211-223],得到一个更为有效的预处理子,进一步将这个新预处理子推广到更一般的鞍点问题.我们对相应预处理矩阵的特征性质进行了详细地分析,对预处理矩阵的最小多项式的次数给出了相关结论.最后通过一些数值试验来说明所提出的新预处理子的有效性和可行性.
[Abstract]:Large-scale sparse linear systems with saddle point structures are widely derived from fluid mechanics, constrained optimal control, structural mechanics, linear programming, circuit design and so on. In this paper, the idea of regularization is applied to the SIMPLE-like preprocessor for solving asymmetrical saddle point systems [Z.-Z.Liangang G.-F.Zhang-J.Comput.appl.Math.Y302 (2016) 211-223], and a more effective preprocessor is obtained, which is further extended to a more general saddle point problem. The characteristic properties of the corresponding preprocessing matrix are analyzed in detail, and the relevant conclusions are given for the degree of the minimum polynomial of the preprocessing matrix. Finally, the validity and feasibility of the proposed new preprocessor are demonstrated by some numerical experiments.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.6
[Abstract]:Large-scale sparse linear systems with saddle point structures are widely derived from fluid mechanics, constrained optimal control, structural mechanics, linear programming, circuit design and so on. In this paper, the idea of regularization is applied to the SIMPLE-like preprocessor for solving asymmetrical saddle point systems [Z.-Z.Liangang G.-F.Zhang-J.Comput.appl.Math.Y302 (2016) 211-223], and a more effective preprocessor is obtained, which is further extended to a more general saddle point problem. The characteristic properties of the corresponding preprocessing matrix are analyzed in detail, and the relevant conclusions are given for the degree of the minimum polynomial of the preprocessing matrix. Finally, the validity and feasibility of the proposed new preprocessor are demonstrated by some numerical experiments.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.6
【相似文献】
相关期刊论文 前10条
1 韩玉良;一类三次系统的细鞍点[J];中国煤炭经济学院学报;1999年03期
2 万维明,迟晓恒;广义齐三次系统鞍点量问题[J];大连铁道学院学报;2001年03期
3 徐子珊;严格鞍点的查找算法[J];重庆工商大学学报(自然科学版);2004年05期
4 桑波;朱思铭;;焦点量与鞍点量的关系[J];数学年刊A辑(中文版);2007年02期
5 徐天博;李伟;;缺参数a_(23),b_(32)的齐五次系统的前四阶鞍点量公式[J];大连交通大学学报;2008年02期
6 赵景余;张国凤;常岩磊;;求解鞍点问题的一种新的结构算法[J];数值计算与计算机应用;2009年02期
7 万维明;周文;;齐四次系统鞍点量公式[J];大连交通大学学报;2010年06期
8 叶惟寅;二次系统鞍点量的计算[J];南京师大学报(自然科学版);1987年02期
9 李文辉;;鞍点的稳定性分析[J];沈阳化工学院学报;1992年03期
10 迟晓恒;三次系统第一第二鞍点量计算公式[J];东北师大学报(自然科学版);1995年01期
相关会议论文 前2条
1 朱怀念;植t熀,
本文编号:2288013
本文链接:https://www.wllwen.com/kejilunwen/yysx/2288013.html