不完全双二次有限体积元法
[Abstract]:Since the finite volume (element) method was put forward by Professor Li Ronghua in the late 1970s as the name of the generalized difference method, the research results have been produced one after another. This method involves two sets of mesh generation and two corresponding function spaces: the heuristic function space on the original mesh generation, the piecewise constant or the piecewise low degree polynomial space on the dual mesh generation, that is, the test function space. In this paper, the incomplete biquadratic finite element space is taken as the heuristic function space. The so-called incomplete double quadratic element means that the type function at every type value point on a primitive unit is an incomplete biquadratic polynomial. Its type value is defined on the four vertices and midpoints of the quadrilateral element. In this paper, the incomplete double quadratic element is studied, and a new numerical method, the incomplete double quadratic finite volume element method, is constructed. The test function space is the piecewise constant function space defined on the dual element, and the test function space takes the incomplete biquadratic finite element space with isoparametric function space, and the test function space takes the piecewise constant function space defined on the dual element. Four different dual meshes are constructed. The first two are non-degenerate dual meshes which are easy to think of, and the latter two are degenerate dual meshes. The finite volume schemes are established for four different meshes, and the stability analysis and convergence analysis are given. When the dual mesh is nondegenerate, the stable mesh ratio range is given, and the stability condition of the scheme is analyzed when the dual grid is degenerate. It is found that the minimum eigenvalue of the matrix of bilinear form is close to 0 or less than 0, which indicates that the bilinear form of bilinear form is not positive definite on a unit. Furthermore, it is proved that the incomplete biquadratic finite volume element method based on nondegenerate scheme is of second order convergence according to the metric of H1 norm. Finally, we use the constructed scheme to solve the Dirichlet problem of Poisson equation. The numerical results show that the numerical solutions of the first two schemes have the best convergence of order 2 according to the metric of the first two schemes, and the numerical solutions of the latter two schemes have the convergence of the first order according to the metric of the first norm. These results further verify the correctness of the theoretical analysis.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.8
【相似文献】
相关期刊论文 前10条
1 李久平;袁益让;;三维电阻抗成像的体积元方法的数值模拟和分析[J];计算数学;2008年01期
2 耿加强;毕春加;;二阶双曲方程的间断有限体积元方法[J];烟台大学学报(自然科学与工程版);2009年02期
3 贾保敏;杨青;;非线性拟双曲方程的有限体积元方法[J];科学技术与工程;2009年16期
4 陈国荣;王雪玲;熊之光;;一类参数识别问题的有限体积元计算[J];衡阳师范学院学报;2011年03期
5 张本良;3-动量体积元的局域洛仑兹形变及减除喷注中粒子测定的背景[J];四川师范大学学报(自然科学版);1990年04期
6 丰连海;求解二阶椭圆型偏微分方程的一种有限体积元格式[J];工程数学学报;2002年04期
7 高夫征;贾尚辉;;一类完全非线性抛物方程组的高次有限体积元方法及分析[J];高等学校计算数学学报;2005年S1期
8 朱爱玲;;抛物方程的扩展混合体积元方法[J];山东师范大学学报(自然科学版);2006年04期
9 陈长春;;四阶波动方程的有限体积元法[J];中国海洋大学学报(自然科学版);2007年01期
10 杨素香;;二维不可压缩无粘流动问题的特征混合体积元的数值模拟[J];山东科学;2007年05期
相关会议论文 前2条
1 张阳;;一类非线性抛物型方程高次有限体积元的预测-校正格式及其最优L~2模误差估计[A];第四届全国青年计算物理学术会议论文摘要集[C];2006年
2 曾志;李君利;许振华;邱睿;;质子剂量的Monte Carlo计算方法[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
相关博士学位论文 前10条
1 朱玲;两类界面问题的有限体积元方法[D];南京师范大学;2015年
2 闫金亮;波方程中一些新的能量守恒有限体积元方法[D];南京师范大学;2016年
3 高艳妮;界面问题的有限体积元法研究[D];吉林大学;2016年
4 王翔;三角形网格上高次有限体积元法的L~2估计和超收敛[D];吉林大学;2016年
5 田万福;混合有限体积元法[D];吉林大学;2010年
6 王全祥;流体力学中几类波方程的有限体积元方法[D];南京师范大学;2013年
7 方志朝;发展型方程的混合有限体积元方法及数值模拟[D];内蒙古大学;2013年
8 丁玉琼;解二阶椭圆型方程的高次有限体积元法的若干研究[D];吉林大学;2010年
9 杨e,
本文编号:2291644
本文链接:https://www.wllwen.com/kejilunwen/yysx/2291644.html