基于模糊理论的时间序列预测研究
[Abstract]:Because the time series prediction can provide good decision support for people, it has been widely used in many fields. In order to be able to predict incomplete and ambiguous data, a fuzzy time series is proposed. With the advent of data age, time series and fuzzy time series model have been paid more and more attention. Based on the research of fuzzy time series and time series prediction model, some new results and research methods are obtained, including the following aspects: 1. With the in-depth development of information, too much emphasis is placed on the accuracy and the poor prediction model can not completely meet the actual application needs of time series prediction. There is an urgent need to propose a temporal sequence prediction model with high accuracy and an interpretable temporal sequence. In view of the above problems, a fuzzy time series prediction model based on automatic clustering and axiomatic fuzzy sets is proposed. The model utilizes the automatic clustering algorithm to generate different length division intervals according to the distribution of the samples, and overcomes the defect of the length of the static interval. The semantic interpretation of fuzzy tendency is generated by AFS classifier, which makes the prediction model easier to understand. Fuzzy trends can be obtained in the prediction process, which provides a reliable basis for decision makers. Then, combining fuzzy time series and classical time series analysis, a fuzzy time series prediction model based on trend prediction and autoregressive model is proposed. The model can dig a significant change trend in the time series, and use the AR (2) model to determine the fluctuation of the prediction data, so as to obtain the final forecast value. The two fuzzy time series prediction models are respectively applied to the real time series, and the experimental results are compared with other similar prediction models, and a better prediction result is obtained. Two single-step time series prediction models are proposed in combination with fuzzy data mining and fuzzy clustering. In the first model, according to the principle of closer relationship between the new occurrence and the present relationship, the sub-sequence of the last sub-sequence is determined by using the affine propagation algorithm so as to determine the category to which the last sub-sequence belongs, i.e. to find the sub-sequence class closest to the predicted sample relation. On this basis, the fuzzy data mining technology is used to generate semantic rules, and the obtained rules are used for prediction, which makes the prediction process more transparent and easier to understand. In the second model, a new time series prediction model is proposed in combination with fuzzy clustering. Firstly, in order to overcome the limitation of the traditional clustering algorithm on the data dimension, the similarity between the time series can be more accurately measured, and a dynamic bending-based fuzzy C-means clustering algorithm is proposed. Then, the time series data constructed by this algorithm is used to gather the data, and the prediction is carried out according to the result of the poly. Both single-step time series prediction models are applied to the Taiwan stock index time series. The experimental results show the validity of the model and get better prediction results than those of the same model. With the in-depth study, multi-step prediction has more important theoretical and practical value than single-step prediction. A multi-step (long-term) time series prediction model is proposed based on information particle and fuzzy clustering. Information Granularization divides the time sequence (abstracted) into a number of meaningful controllable information particles, which render the time series presented in a more understandable way. Therefore, using the information grain structure time series prediction model, the prediction model has interpretability. Because the prediction model is multi-step prediction, a plurality of prediction values can be predicted at one time, repeated iterations are not needed, and the calculation time is greatly reduced. In this paper, the application process of the prediction model is presented in a synthetic time series as an example, and the feasibility of the model is verified. The model is applied to several sets of real time series, and the experimental results show the superiority of the model.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O211.61
【相似文献】
相关期刊论文 前10条
1 吴鹏;刘振;陈月辉;;基于神经树的时间序列预测[J];山东科学;2007年01期
2 沈浩;邓梦曦;;预则立——时间序列预测技术之广电业务应用[J];中国数字电视;2011年10期
3 许继平;刘载文;那靖;;司法消噪与多技术融合的时间序列预测[J];计算机工程与应用;2010年24期
4 王刚,胡德文;基于时间序列预测的独立分量排序[J];国防科技大学学报;2005年05期
5 杨久婷;张海望;;基于小波分解与自回归树的时间序列预测新方法[J];科技信息;2009年31期
6 张弦;王宏力;;具有选择与遗忘机制的极端学习机在时间序列预测中的应用[J];物理学报;2011年08期
7 邢蕾;;基于小波分析时间序列预测技术进展[J];吉林金融研究;2009年04期
8 肖凡;马捷中;任岚昆;;基于小波分析与支持向量机的时间序列预测[J];航空计算技术;2011年06期
9 杨玫;赵秀丽;刘瑜;;时间序列预测问题中小波分解的应用研究[J];信息技术与信息化;2011年02期
10 丁红;武招云;龚若愚;廖文凯;;小波分析在径流时间序列预测的应用[J];柳州师专学报;2012年03期
相关会议论文 前4条
1 陈宇;唐常杰;钟义啸;段磊;乔少杰;普东航;;基于基因表达式编程和时变强度的时间序列预测[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年
2 王亮;钟登华;葛晓冬;;预测方法综述[A];全国青年管理科学与系统科学论文集(第1卷)[C];1991年
3 尤华;王建东;;机场噪声的时间序列预测[A];2011年通信与信息技术新进展——第八届中国通信学会学术年会论文集[C];2011年
4 王栋;陈勇;徐建良;;基于预测的BitTorrent种子评估方法[A];2008'中国信息技术与应用学术论坛论文集(二)[C];2008年
相关博士学位论文 前5条
1 王威娜;基于模糊理论的时间序列预测研究[D];大连理工大学;2016年
2 张冬青;非线性非高斯时间序列预测研究[D];南京航空航天大学;2008年
3 刘大同;基于Online SVR的在线时间序列预测方法及其应用研究[D];哈尔滨工业大学;2010年
4 熊涛;基于EMD的时间序列预测混合建模技术及其应用研究[D];华中科技大学;2014年
5 王军;基于局部模型的时间序列预测方法研究[D];哈尔滨工业大学;2007年
相关硕士学位论文 前10条
1 陈诗语;基于网络的时间序列预测[D];西南大学;2015年
2 黄杰;SOM在时间序列预测中的应用研究[D];兰州交通大学;2015年
3 胡海峰;泄漏积分型回声状态网的优化及其在时间序列预测中的应用[D];渤海大学;2016年
4 侯效永;多尺度时间序列预测[D];苏州大学;2013年
5 王丽贤;时间序列预测技术研究[D];天津理工大学;2012年
6 王权;基于选择策略的时间序列预测研究[D];南京航空航天大学;2011年
7 宋玉强;人工神经网络在时间序列预测中的应用研究[D];西安建筑科技大学;2005年
8 张慧;自适应模糊时间序列预测模型的研究[D];大连海事大学;2012年
9 王欣冉;基于小波包与最小二乘支持向量机的时间序列预测研究[D];中国地质大学(北京);2011年
10 戴群;改进型前向神经网络的时间序列预测及其性能比较[D];南京航空航天大学;2003年
,本文编号:2296418
本文链接:https://www.wllwen.com/kejilunwen/yysx/2296418.html