Burgers方程的有限元后验误差估计及其应用
[Abstract]:As one of the most basic partial differential equations in fluid mechanics, Burgers equation is a nonlinear partial differential equation which can be solved in some cases. However, the solution of Burgers equation may have poor regularity (shock wave phenomenon) in some local regions, which will make it very difficult to solve numerically. Therefore, the study of efficient numerical methods for Burgers equations is of great theoretical significance and practical value. However, adaptive finite element method based on posteriori error estimation is very useful for solving problems with local singularities. The paper is divided into five chapters. The introduction introduces the research background of adaptive finite element, the research background and significance of Burgers equation, the research status of Burgers equation and so on. In the second chapter, we introduce the inequalities, theorems, Sobolev spaces, mesh division management strategies and so on. In chapter 3, chapter 4, we deal with the Burgers problem with Dirichlet boundary condition based on Cole-hopf transform, then discretize the transformed heat conduction equation in time and space by using the least square finite element method. A posteriori error estimator is constructed for semi-discrete schemes and fully discrete schemes, and then verified by a concrete example. In one dimension we select a large Reynolds number and compare it with the error of uniform mesh. The results show that the adaptive mesh number is smaller and the computational efficiency is improved when the error is similar. In two dimensional case, the adaptive and uniform mesh generation is carried out in different time nodes. The numerical simulation results show that the theory in this paper is correct and the constructed numerical method is feasible. The fifth chapter makes a summary of the full text and prospects for future work.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.82
【参考文献】
相关期刊论文 前10条
1 周少玲;侯磊;;Oldroyd-B流体的解耦有限元算法[J];中北大学学报(自然科学版);2016年04期
2 鲁晓莉;赵书博;黄鹏展;;Burgers方程的级数解[J];伊犁师范学院学报(自然科学版);2015年02期
3 赵国忠;蔚喜军;;一类非线性Burgers方程组的基于Hopf-Cole变换的直接间断Galerkin有限元方法[J];高等学校计算数学学报;2015年02期
4 孙晨扬;李启良;杨志刚;;最小二乘有限元法求解非定常应力的Navier-Stokes方程[J];计算物理;2015年01期
5 马艳春;张寅虎;冯新龙;;二维Burgers方程的RKDG有限元解法[J];工程数学学报;2013年03期
6 陶莎;杨志刚;江伯南;顾文俊;;最小二乘有限元法和有限体积法在CFD中的应用比较[J];计算机辅助工程;2012年02期
7 谢焕田;;Burgers方程差分解的收敛性与稳定性[J];高校应用数学学报A辑;2012年01期
8 成彬;纪光华;王冬艳;;带粘性的Burgers方程的自适应有限元算法[J];微计算机信息;2010年34期
9 董会;梅立泉;周忠志;;线弹性平板问题的两步最小二乘法有限元[J];装备制造技术;2010年08期
10 田强;赵国忠;;Burgers方程的指数型差分格式[J];内蒙古大学学报(自然科学版);2009年01期
相关硕士学位论文 前4条
1 范磊;非线性Burgers方程的高精度数值解法[D];北方工业大学;2015年
2 胡瑜;Burgers方程的初边值问题的多重尺度分析[D];北京化工大学;2012年
3 马艳春;二维Burgers方程的间断Galerkin有限元方法[D];新疆大学;2011年
4 陈海峰;基于Hopf-Cole变换Burgers方程的有限元方法研究[D];内蒙古大学;2011年
,本文编号:2298930
本文链接:https://www.wllwen.com/kejilunwen/yysx/2298930.html