拟序集上几类非线性算子的广义不动点
发布时间:2018-10-31 12:06
【摘要】:本文利用序方法将半序集上一些经典的不动点定理进行了推广,得到了若干拟序集上非线性算子的广义不动点定理,主要结果如下:1.在拟序集上提出了A=CB型和∑i=1mCiBi型增算子的概念,用序方法研究了4=CB型和∑i=1m CiBi型增算子的不动点的问题,得出了A=CB型和∑i=1m CiBi型增算子在不具备连续性的情况下存在最小和最大广义不动点.2.在拟序Banach空间上提出了正规楔的概念,用序与拓扑相结合的方法研究了拟序Banach空问中全拟序子集列紧性的性质及算子的不动点的存在性问题,得出了拟序Banach空间中全拟序子集列紧性等价于弱列紧性及其上增算子的广义不动点的存在性.3.在拟序集上提出了混合单调算子及其广义耦合不动点的概念,用序方法研究了混合单调算子的广义耦合不动点的问题,得出了拟序集上混合单调算子在不具备连续性的情况下存在最小和最大广义耦合不动点.
[Abstract]:In this paper, we generalize some classical fixed point theorems on semi-ordered sets by using the ordering method, and obtain some generalized fixed point theorems for nonlinear operators on quasi-ordered sets. The main results are as follows: 1. In this paper, the concepts of A=CB type and 鈭,
本文编号:2302119
[Abstract]:In this paper, we generalize some classical fixed point theorems on semi-ordered sets by using the ordering method, and obtain some generalized fixed point theorems for nonlinear operators on quasi-ordered sets. The main results are as follows: 1. In this paper, the concepts of A=CB type and 鈭,
本文编号:2302119
本文链接:https://www.wllwen.com/kejilunwen/yysx/2302119.html