一类特定的微分方程解的增长性
发布时间:2018-11-04 21:12
【摘要】:在本篇论文中,假设σ(Aj)=n(n为正整数),Aj如均为完全正则增长函数,hAj(θ)=cjhA0(θ),j=1,…,k-1,其中cj1且互不相同,我们证明了方程f(k)+Ak-1(z)f(k-1)+ …+A0(z)f=0的解.f(≠0)均为无穷级。并且,当F(z)(≠0)为整函数时,对于方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=F的解,我们还证明了:(1)最多只有一个解f0为有穷级,其他解均满足λ(f)=λ(f)=σ(f)=∞, λ2(f)=λ2(f)=σ2(f)≤max{n,σ(F)};(2)如果存在一个解f0为有穷级解,则σ(f0)≤max{n,λ(f0),σ(F)}.
[Abstract]:In this paper, we assume that 蟽 (Aj) = n (n is a positive integer), Aj, if they are all fully regular growth functions, hAj (胃) = cjhA0 (胃), JJ 1, 鈥,
本文编号:2311152
[Abstract]:In this paper, we assume that 蟽 (Aj) = n (n is a positive integer), Aj, if they are all fully regular growth functions, hAj (胃) = cjhA0 (胃), JJ 1, 鈥,
本文编号:2311152
本文链接:https://www.wllwen.com/kejilunwen/yysx/2311152.html