当前位置:主页 > 科技论文 > 数学论文 >

复平面上解析Banach空间的拟不变子空间

发布时间:2018-11-11 11:53
【摘要】:讨论复平面上解析Banach空间具有任意指标的拟不变子空间的存在性问题.首先给出一类复平面上解析Banach空间存在任意指标拟不变子空间的判定定理.作为应用,证明了Fock型空间F~p(C)={f∈Hol(C):1/π∫_C|f(z)|~pe~(-|z|~2)dA(z)+∞,1≤p+∞}与Hilbert空间H={f∈Hol(C):1/π∫_C|f(z)|~2e~(-|z|)dA(z)+∞}具有任意指标的拟不变子空间.
[Abstract]:The existence of quasi-invariant subspaces with arbitrary indices in analytic Banach spaces on complex plane is discussed. In this paper, we first give the theorem of the existence of any index quasi invariant subspace in a class of analytic Banach spaces on the complex plane. As an application, it is proved that the Fock type space FRP (C) = {f 鈭,

本文编号:2324765

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2324765.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a2ab8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com