时间序列挖掘算法在生产安全事故中的应用研究
[Abstract]:The annual economic loss caused by safety problems in China accounts for about 6% of the total amount of GDP, which brings great losses to the country and the people, so it is very important to predict the accidents of production safety. The traditional analysis of production safety accidents mainly includes statistical analysis, regression model, grey model and so on, which is unfavorable to take measures to prevent accidents. This paper combines the theory of monadic time series and the theory of multivariate time series in the research of production safety accident data. It has some innovation in the application of the theory, and applies the time series prediction model to the prediction of production safety. In particular, the vector moving average autoregressive method of binary time series of multivariate time series is applied to production safety accidents. Taking the data of nearly 10 years as an example, the trend and influencing factors of accidents are analyzed from many aspects. To provide guidance and suggestions, timely production safety accidents to take measures. This paper mainly carried out a few aspects of the work: 1. The data are obtained from the official website of the State Safety Supervision Bureau, and the production safety accidents and their brief information are obtained by regular expression. Through the data preprocessing to the big accident, the data characteristic is displayed through the visualization. 2. 2. The ARIMA model of monadic time series and the cubic exponential smoothing model are compared with the data fitting and forecasting results of 15 years of production safety larger accident series, and the number of deaths in accidents, the number of deaths and the development trend are compared in terms of the number of accidents, the number of deaths, and the trend of development. The residual error of the unary time series prediction model is -21. 92, relative error 0. 266a higher accuracy and reliability than cubic exponential smoothing. This paper studies the theoretical basis of multivariate time series and applies it to the prediction of production safety accidents. Compared with the previous models, the relative error is 0.2452, which is more accurate. The binary time series of death and accident are analyzed, and its growth rate is used as time series analysis model to predict the value of less than 12 months. This paper combines qualitative analysis with quantitative prediction to predict production safety accidents. Qualitative analysis: the accident is divided into different types through the large accident brief information, among which the traffic accident type is the most; For the year analysis of major accidents, the turning point is 2005, before 2005, the major accidents are on the rise, and after 2005, the trend is decreasing year by year. In view of the region of large accidents, it is found that the major accidents are mainly in the southwest mountainous area and the geological unstable area. Quantitative analysis: through establishing exponential smoothing, univariate time series, multivariate time series model, adjusting model parameters, selecting the best model to predict the larger accident sequence. Get the trend of production safety accidents in the coming year. The countermeasures to prevent and reduce accidents are put forward in time through the trend to provide support for national macro-decision-making.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X915.4;O211.61
【参考文献】
相关期刊论文 前10条
1 李丽;刘新;康华;闫立达;;基于2010年—2014年年度事故统计的我国安全生产形势分析[J];长春工程学院学报(自然科学版);2015年02期
2 李生才;笑蕾;;2014年7—8月国内生产安全事故统计分析[J];安全与环境学报;2014年05期
3 支同祥;;新《安全生产法》要点解读[J];劳动保护;2014年10期
4 李飞翱;罗文强;刘小珊;黄丽;;多元非平稳时间序列分析的滑坡变形预测研究[J];长江科学院院报;2014年04期
5 崔桂梅;李静;张勇;卢俊慧;马祥;;高炉铁水温度的多元时间序列建模和预测[J];钢铁研究学报;2014年04期
6 张文勋;;基于灰色预测法和指数平滑法预测研究新疆安全生产事故[J];安全;2013年11期
7 李晓东;陈琦;;我国建筑生产安全事故的主要类型及其防范措施[J];土木工程学报;2012年S2期
8 王琰;殷跃广;;基于灰色系统理论的安全生产事故分析和预测[J];科技资讯;2012年06期
9 刘香兰;董桂刚;朱纪明;;灰色关联分析在煤矿伤亡事故统计分析中的应用[J];煤炭工程;2012年02期
10 胡军伟;秦奕青;张伟;;正则表达式在Web信息抽取中的应用[J];北京信息科技大学学报(自然科学版);2011年06期
相关博士学位论文 前6条
1 闫明月;时间序列相似性与预测算法研究及其应用[D];北京交通大学;2014年
2 李德才;基于多元时间序列的关联分析及预测方法研究[D];大连理工大学;2012年
3 吴佳文;水文时间序列数据挖掘算法研究与应用[D];沈阳农业大学;2011年
4 吴少智;时间序列数据挖掘在生物医学中的应用研究[D];电子科技大学;2010年
5 管河山;金融多元时间序列挖掘方法研究与应用[D];厦门大学;2008年
6 杜奕;时间序列挖掘相关算法研究及应用[D];中国科学技术大学;2007年
相关硕士学位论文 前10条
1 杨谕黔;多维时间序列学习建模与预测分析[D];北京交通大学;2014年
2 郑皓;基于多元时间序列的神经网络短期风速预测模型的研究[D];太原理工大学;2013年
3 陈娟;我国煤矿事故统计分析及基于最佳组合模型的预测研究[D];太原理工大学;2012年
4 彭晓晓;建筑安全事故预测和预控对策研究[D];中国海洋大学;2012年
5 代洪伟;时间序列分析在我国居民消费价格指数中的应用研究[D];合肥工业大学;2012年
6 冯健钧;政府构建安全生产长效机制研究[D];天津大学;2010年
7 魏宁;时间序列分析方法研究及其在陕西省GDP预测中的应用[D];西北农林科技大学;2010年
8 赵玮英;时间序列分析在气象中的应用[D];扬州大学;2010年
9 李琦;时间序列VARFIMA模型研究与应用[D];西安电子科技大学;2010年
10 李苏旺;时间序列数据建模及其在瓦斯预测中的应用研究[D];太原理工大学;2007年
,本文编号:2329310
本文链接:https://www.wllwen.com/kejilunwen/yysx/2329310.html