基于任意多项式逼近的不确定量化问题的压缩感知算法的研究
[Abstract]:In recent years, the calculation of uncertain quantization problems has been paid more and more attention. How to quantify the effect of random input on system output is the core problem of uncertainty quantization. Generalized orthogonal polynomial (generalized Polynomial Chaos) approximation in random parameter spaces is an effective method, which has been successfully applied to the computation of uncertain quantization problems. However, in many cases, the random parameters we get are discrete values, which means that the discrete measure is more suitable to solve our problem from the point of view of modeling. Therefore, in this paper, we focus on the approximation of the output of the stochastic model by any orthogonal polynomial (a PC) based on the discrete measure when the random parameter is subjected to the discrete probability measure. It is expected to provide a fast and effective calculation method for this problem. We first introduce the methods of generating orthogonal arbitrary polynomials under discrete measure, including Nowak method, Stieltjes method and Lanczos method. Then we use the random collocation method based on the nonconvex contractive perception to deal with some common uncertain quantization problems with discrete random input by taking any polynomial of orthogonal discrete measure as the basis function. Specifically, we give a sparse grid random collocation method based on arbitrary orthogonal polynomial approximation for partial differential equations with random input. A random collocation method for solving some kinds of nonconvex contractive perception algorithms with stochastic input partial differential equations by arbitrary polynomial expansion is studied. The basic framework of smoothed-log optimization algorithm, smoothed-l_q optimization algorithm and l_1-l_2 algorithm for solving the sparse approximation of polynomial expansion is presented. In the part of numerical experiment, we first investigate the sparse polynomial function, and compare the performance of three kinds of non-convex compression perceptual solver based on three kinds of non-convex compression perceptual solver by calculating the success rate of reconstruction. Then we consider the sparse polynomial approximation of the function. By calculating the root mean square error of the function, we show that a PC is used as the basis function, and the nonconvex contractive perceptual random collocation method can effectively approximate the objective function. This provides a basis for the approximation of stochastic responses to the subsequent solutions of stochastic differential equations. Then, we consider the solution of ODE with random input. Finally, through the numerical simulation of fractional diffusion equation with random source term, we compare the random collocation method based on sparse mesh with the random collocation method based on non-convex compression perception. The random collocation method based on non-convex compression sensing is much less than the number of sample points used in sparse mesh under the same precision requirement, which greatly improves the computational efficiency. All the results show that for a given random variable with arbitrary discrete measure, the approximation of the random response of the system under any orthogonal polynomial can be effectively solved by a random collocation method based on nonconvex contractive perception. At the same time, in the three non-convex compression-aware solvers we selected (smoothed-log optimization algorithm, smoothed-l_q optimization algorithm and l_1-l_2 algorithm), smoothed-Log shows great advantages in all numerical examples. This provides a reference for the selection of solvers for solving large-scale stochastic problems using the stochastic collocation method based on nonconvex compression perception.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241
【相似文献】
相关期刊论文 前10条
1 王国瑾,胡倩倩;一类有理Bézier曲线及其求积求导的多项式逼近[J];高校应用数学学报A辑(中文版);2004年01期
2 张建国,邹杰涛,吴润衡;有关多项式逼近的两个性质[J];华北工学院学报;2004年06期
3 陈文喻;汪国昭;;反函数的混合多项式逼近[J];浙江大学学报(理学版);2006年05期
4 常晶;刘冬;;非线性常微分方程的多项式逼近[J];吉林大学学报(理学版);2010年03期
5 崔振文;;关于拟分段单调多项式逼近问题[J];河南师范大学学报(自然科学版);1981年01期
6 吴学谋;;分区与统一多项式逼近——数学中的转化概念(Ⅲ)[J];武汉大学学报(自然科学版);1977年03期
7 谢庭藩;多项式逼近函数的几个问题[J];数学进展;1984年01期
8 张伟;基于多项式逼近的学习式搜索[J];辽宁大学学报(自然科学版);1995年S1期
9 王小春;Bernstein多项式逼近的一个定理[J];武汉化工学院学报;1996年01期
10 肖秋菊;L~ψ空间中的多项式逼近[J];衡阳师范学院学报(自然科学);2001年06期
相关会议论文 前2条
1 王巧龙;王钲旋;许志闻;李海军;;基于三次Bernstein多项式逼近的数字图像压缩算法[A];中国仪器仪表学会第六届青年学术会议论文集[C];2004年
2 吴存利;马晓平;方同;;Gegenbauer多项式逼近法的一个补注[A];中国力学学会学术大会'2005论文摘要集(下)[C];2005年
相关硕士学位论文 前7条
1 刘亮亮;基于任意多项式逼近的不确定量化问题的压缩感知算法的研究[D];上海师范大学;2017年
2 杨洁;基于M(o|¨)bius变换的二次曲面的双四次多项式逼近[D];浙江工商大学;2017年
3 常晶;非线性常微分方程多项式逼近[D];吉林大学;2007年
4 林贞;有理Bézier曲线的多项式逼近研究[D];合肥工业大学;2014年
5 孟祥国;有关有理曲线曲面的多项式逼近问题研究[D];大连理工大学;2003年
6 张瑞岗;基于KAM理论的频率映射分析及广义多项式逼近理论[D];内蒙古大学;2013年
7 刘永乐;基于非凸的压缩感知随机配置方法求解带有随机输入的SPDEs[D];上海师范大学;2017年
,本文编号:2349847
本文链接:https://www.wllwen.com/kejilunwen/yysx/2349847.html