当前位置:主页 > 科技论文 > 数学论文 >

非均质三维Navier-Stokes方程模型的整体正则性

发布时间:2018-11-22 20:06
【摘要】:考虑一个非均质三维Navier-Stokes方程模型,借助能量方法、Littlewood-Paley仿积分解技巧和Sobolev嵌入定理研究解的整体正则性.用-D2u近似替代经典非均质Navier-Stokes方程中的耗散项Δu,得到一个新的NavierStokes方程模型,其中D是一个傅里叶乘子,其特征是m(ξ)=|ξ|5/4,对于任意小的正常数ε和δ,当初值(ρ0,u0)∈H3/2+ε×Hδ时,证明了该模型解的爆破准则和整体正则性.
[Abstract]:In this paper, a heterogeneous three-dimensional Navier-Stokes equation model is considered. The global regularity of the solution is studied by means of energy method, Littlewood-Paley para-integral solution technique and Sobolev embedding theorem. The dissipative term 螖 u in the classical inhomogeneous Navier-Stokes equation is replaced by -D 2u approximation, and a new NavierStokes equation model is obtained, where D is a Fourier multiplier whose characteristic is m (尉) = 尉 5 / 4, for any small normal number 蔚 and 未, When the initial value (蟻 _ 0 u _ 0) 鈭,

本文编号:2350419

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2350419.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3841a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com