带交叉扩散的捕食—食饵模型的研究
发布时间:2018-11-25 15:53
【摘要】:通过建立数学模型来描述生物系统的特性是数学应用领域的一个重要组成部分.捕食-食饵模型是数学模型的有机组成,吸引了众多学者的关注,并取得了许多结果.现实中,带交叉扩散项的模型能更加准确地反映捕食者和食饵的捕食关系.同时,对于生态学的研究也有一定的参考价值.本文主要研究两类带有交叉扩散项的捕食-食饵模型在齐次Dirichlet边界条件下的解的性质,其中一类为带有B-D功能反应函数的捕食系统,另一类为HollingⅣ捕食-食饵模型.本文主要运用偏微分方程和反应扩散方程的理论和方法,讨论模型正解的先验估计、解的存在性、分歧等等.本文主要内容如下:第一章概述有关生态数学模型的背景、研究成果及进展,并介绍一些预备知识,我们将用这些理论证明本文带有交叉扩散项的捕食-食饵模型的正解的存在性.第二章研究了一类带B-D功能反应函数的捕食-食饵模型在齐次Dirichlet边界条件下正解的存在性.首先利用极大值原理得到了正解的先验估计;接着通过分析相关的特征值问题,得到了两条无界的中性曲线;最后以食饵的生长率为分歧参数,借助Crandall-Rabinowitz分歧理论,得出局部分歧正解的存在性,并将局部分歧延拓为全局分歧,得到正解存在的充分条件,从而给出捕食者与食饵在一定条件下是可以共存的.第三章研究了一类带交叉扩散的HollingⅣ捕食-食饵模型在齐次Dirichlet边界条件下正解的存在性.首先借助Crandall-Rabinowitz分歧理论,得出局部分歧正解的存在性;然后将局部分歧延拓为全局分歧,得到正解存在的充分条件,从而给出捕食者与食饵在一定条件下是可以共存的.
[Abstract]:It is an important part of mathematical application field to establish mathematical model to describe the characteristics of biological system. Predator-prey model is an organic component of mathematical model and has attracted many scholars' attention and obtained many results. In reality, the model with cross diffusion term can more accurately reflect the predator-prey relationship. At the same time, the study of ecology also has certain reference value. In this paper, we study the properties of solutions of two kinds of predator-prey models with cross-diffusion term under homogeneous Dirichlet boundary conditions. One is a predator-prey system with B-D functional response function, the other is a Holling 鈪,
本文编号:2356664
[Abstract]:It is an important part of mathematical application field to establish mathematical model to describe the characteristics of biological system. Predator-prey model is an organic component of mathematical model and has attracted many scholars' attention and obtained many results. In reality, the model with cross diffusion term can more accurately reflect the predator-prey relationship. At the same time, the study of ecology also has certain reference value. In this paper, we study the properties of solutions of two kinds of predator-prey models with cross-diffusion term under homogeneous Dirichlet boundary conditions. One is a predator-prey system with B-D functional response function, the other is a Holling 鈪,
本文编号:2356664
本文链接:https://www.wllwen.com/kejilunwen/yysx/2356664.html