一类线性差分方程的亚纯解与一个亚纯函数分担3个值的唯一性
发布时间:2018-12-11 00:46
【摘要】:主要研究差分方程a_1(z)f(x+1)+a_0(z)f(z)=F(z)的一个有穷级超越亚纯解f(z)与亚纯函数g(z)分担0,1,∞CM时的唯一性问题(其中a_(z),a0(z),F(z)为非零多项式,且满足a_1(z)+a_0(z)■0),得到f(x)≡g(z),或f(z)+g(z)≡f(z)g(z),或存在一个多项式β(z)=az+b_0和一个常数a_0满足e~(a_0)≠e~(b_0),使得f(z)=(1-e~(β(x)))/(e~(β(x))(e~(a_o-b_0)-1))与g(z)=(1-e~(β(x)))/(1-e~(b_o-a_0)),其中a(≠0),b_0为常数.
[Abstract]:In this paper, we study a finite order transcendental meromorphic solution f (z) and meromorphic function g (z) sharing 0 ~ 1 of a finite order transcendental meromorphic solution of difference equation a _ s _ 1 (z) f (x _ 1) _ a _ 0 (z) f (z) = F (z). The uniqueness problem of 鈭,
本文编号:2371537
[Abstract]:In this paper, we study a finite order transcendental meromorphic solution f (z) and meromorphic function g (z) sharing 0 ~ 1 of a finite order transcendental meromorphic solution of difference equation a _ s _ 1 (z) f (x _ 1) _ a _ 0 (z) f (z) = F (z). The uniqueness problem of 鈭,
本文编号:2371537
本文链接:https://www.wllwen.com/kejilunwen/yysx/2371537.html