多圆盘调和Hardy空间上的对偶Toeplitz算子
发布时间:2018-12-17 18:08
【摘要】:在目前的数学领域中,对偶Toeplitz算子理论方面的内容多是围绕在Hardy空间、Bergman空间,甚至是调和Bergman空间上,而调和Hardy空间上的理论则相对少很多。本篇论文就是着眼于调和Hardy空间上对偶Toeplitz算子性质的研究。论文一共分为四部分。第一部分的绪论部分首先介绍了一下目前的研究情况,重点介绍了多圆环T~n上的调和Hardy空间h~2(T~n)=H~2(T~n)+H~2(T~n)的定义。并且给出了作用在空间h~2(T~n)的补空间上的对偶Toeplitz算子的定义:其中Q=I-P,而P表示从空间L2(T~n)到空间h~2(T~n)上的正交投影。还通过空间L2(T~n)上乘法算子Mφ,得出了等式这个等式在后面文章的证明中经常用到。第二部分的核心内容是空间h~2(T~n)上的谱包含定理:如果φ∈L∞(T~n),则R(φ)(?)σ(Sφ)。完成了定理的证明之后又介绍了几条由此得出的空间h~2(T~n)上的常用推论。例如若算子Sφ是自伴的,当且仅当φ是实值函数。有了谱包含定理之后,第三部分开始研究h~2(T~n)上的对偶Toeplitz算子Sφ的交换性。通过简单的实例,就可以清晰地知道空间h~2(T~n)的调和性在交换性等性质方面有着非常重要的作用,因此并不能得出适合所有算子Sφ的结论。本文只研究了n=2,并且对偶Toeplitz算子Sφ的符号函数具有如下特殊形式的情况下的交换性质:其中f,g∈H∞(D2),z,w∈T,mi,ni∈N,i=1,2.而最后一部分的算子Sφ的半交换性的研究也是在与第三部分相同的前提下进行的,通过对参数m_i,n_i的分情况讨论得出结论。
[Abstract]:In the field of mathematics at present, the theory of dual Toeplitz operators is mostly centered on Hardy space, Bergman space, and even harmonic Bergman space, while the theory of harmonic Hardy space is relatively few. This paper focuses on the study of the properties of dual Toeplitz operators on harmonic Hardy spaces. The paper is divided into four parts. The introduction of the first part first introduces the present research situation, and focuses on the definition of harmonic Hardy space Hn2 (Tnn) = Hn2 (Tnn) on the polycircular ring Tnn. We also give the definition of dual Toeplitz operator acting on the complementary space of space HG 2 (Tn), where QG I-P, and P denotes the orthogonal projection from space L2 (Tn) to space HG 2 (Tn). By means of the multiplication operator M 蠁 on the space L2 (Tn), it is obtained that the equation is often used in the proof of the following papers. The core of the second part is the spectral inclusion theorem on the space H ~ (2) (T _ (n): if 蠁 鈭,
本文编号:2384606
[Abstract]:In the field of mathematics at present, the theory of dual Toeplitz operators is mostly centered on Hardy space, Bergman space, and even harmonic Bergman space, while the theory of harmonic Hardy space is relatively few. This paper focuses on the study of the properties of dual Toeplitz operators on harmonic Hardy spaces. The paper is divided into four parts. The introduction of the first part first introduces the present research situation, and focuses on the definition of harmonic Hardy space Hn2 (Tnn) = Hn2 (Tnn) on the polycircular ring Tnn. We also give the definition of dual Toeplitz operator acting on the complementary space of space HG 2 (Tn), where QG I-P, and P denotes the orthogonal projection from space L2 (Tn) to space HG 2 (Tn). By means of the multiplication operator M 蠁 on the space L2 (Tn), it is obtained that the equation is often used in the proof of the following papers. The core of the second part is the spectral inclusion theorem on the space H ~ (2) (T _ (n): if 蠁 鈭,
本文编号:2384606
本文链接:https://www.wllwen.com/kejilunwen/yysx/2384606.html