LBS疲劳寿命分布的统计分析
[Abstract]:The Generalized Birnbaum-Saunders (GBS) distribution is a flexible life model, which is widely used in the reliability analysis of products, and the fitting effect is better. Therefore, the properties of the distribution, statistical inference and parameter estimation methods are explored. It has become a topic of theoretical value and practical significance. The distribution of fatigue life of BS-Laplace (LBS) is studied in this paper. In this paper, the background of LBS distribution is introduced briefly. The properties of the distribution, such as expectation, variance, coefficient of variation, correlation coefficient, bias and kurtosis, are deduced and calculated in detail, and the distributions of variables X-1 and Xa (a0) are analyzed. Then, the images of density function, failure rate function and average failure rate function are studied, their shape trend is proved, and the images with different parameters are drawn. The distribution density function, the failure rate function and the average failure rate function have two shapes: "inverted bathtub shape" and "inverted bathtub-inverted bathtub shape". Then, several estimation methods of parameter 伪 尾 in LBS distribution are given, including moment estimation 1, moment estimation 2, inverse moment estimation and quantile estimation. It is concluded that quantile estimation is the best method for parameter 尾 estimation. Moment estimation 2 has the best effect on parameter 伪, and the quantile estimation is better than other methods. Secondly, the interval estimation of the scale parameter 尾 in the LBS distribution is made under the whole sample, and the Monte Carlo simulation of the interval estimation is carried out. The results show that the estimation method is not very satisfactory. Thirdly, we generalize the LBS distribution, introduce the position parameter 渭, propose the three-parameter LBSIbam), (fatigue life distribution, and give the moment estimation and quantile estimation of the parameters. In addition, when the true values of LBSI distribution parameters are given, the estimated values of the two methods are obtained by simulation.
【学位授予单位】:上海师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O213.2
【参考文献】
相关期刊论文 前10条
1 王蓉华;顾蓓青;徐晓岭;;对数正态分布的失效率与平均失效率函数的图像特征[J];统计与决策;2015年03期
2 孙祝岭;;疲劳寿命分布变异系数的统计推断[J];质量与可靠性;2013年01期
3 孙祝岭;;Birnbaum-Saunders分布环境因子的置信限[J];强度与环境;2012年04期
4 孙祝岭;;Birnbaum-Saunders疲劳寿命分布尺度参数的区间估计[J];兵工学报;2009年11期
5 周磊;孙玲玲;严晓浪;陈偕雄;蒋立飞;;一种基于概率解释的新型互连线时延Slew模型[J];电路与系统学报;2009年02期
6 ;Statistical Analysis for the Birnbaum-Saunders Fatigue Life Distribution under Multiply Type-ⅡCensoring[J];数学季刊;2006年01期
7 ;Statistical Analysis for the Birnbaum-Saunders Fatigue Life Distribution under Type-Ⅱ Bilateral Censoring and Multiply Type-II Censoring[J];数学季刊;2004年02期
8 张洪才,陈举华;机械产品的平均剩余寿命及其相关失效率特性分析[J];现代机械;2000年04期
9 王蓉华,费鹤良;双边截尾场合下BS疲劳寿命分布的参数估计[J];上海师范大学学报(自然科学版);1999年02期
10 王炳兴,王玲玲;Birnbaum-Saunders疲劳寿命分布的参数估计[J];华东师范大学学报(自然科学版);1996年04期
相关硕士学位论文 前1条
1 刘芳;寿命分布的失效率和平均剩余寿命函数单调性的研究[D];南京航空航天大学;2007年
,本文编号:2393849
本文链接:https://www.wllwen.com/kejilunwen/yysx/2393849.html