相依随机序列滑动平均的强偏差定理的研究
发布时间:2019-02-09 16:36
【摘要】:20世纪70年代末,刘文教授及其合作者将概率论中的强极限定理推广到用不等式表达的情形,建立了随机序列的强偏差定理,并取得了丰富的研究成果。本文基于前人的研究基础上,考虑在不同的参考乘积分布的情形下,研究一类相依随机序列关于不同参考乘积分布的滑动平均的强偏差定理。研究的基本思路是引入滑动似然比和滑动相对熵作为相依随机序列联合分布与参考乘积分布偏差的一种随机性度量。通过限制滑动相对熵的取值范围,给出样本空间的一个子集,并在此子集上得到了随机序列滑动平均的上、下界,即强偏差定理。证明的要点是构造一个带参数的滑动似然比,利用经典的Borel-Cantelli引理及分析法,得到几乎处处收敛的不等式。全文共分为六章:第一章是绪论部分,介绍了本论文的选题背景及研究相依随机序列强偏差定理的基本思想与方法;第二章简要介绍了相关的基本定理和概念,以及与本文有关的研究成果;第三章引入滑动似然比和滑动相对熵的概念,研究随机受控的随机序列滑动平均的若干强偏差定理,且推广已有的成果;第四章继续研究连续信源相对于无记忆Gamma信源的强偏差定理;第五章研究任意相依随机序列与可列二重非齐次马氏泛涵的滑动平均的一类强偏差定理;第六章对全文进行总结与展望。
[Abstract]:In the late 1970s, Professor Liu Wen and his collaborators extended the strong limit theorem of probability theory to the case of inequality, established the strong deviation theorem of random sequence, and obtained abundant research results. In this paper, based on the previous studies, we consider the strong deviation theorems for a class of dependent random sequences with respect to the moving average of different reference product distributions in the case of different reference product distributions. The basic idea of the study is to introduce the sliding likelihood ratio and sliding relative entropy as a random measure of the deviation between the joint distribution and the reference product distribution of dependent random sequences. By limiting the range of sliding relative entropy, a subset of the sample space is given, and the upper and lower bounds of the moving average of random sequences, that is, the strong deviation theorem, are obtained. The main point of the proof is to construct a sliding likelihood ratio with parameters. By using the classical Borel-Cantelli Lemma and the analysis method, we obtain almost everywhere convergence inequalities. The full text is divided into six chapters: the first chapter is the introduction part, which introduces the background of this paper and the basic ideas and methods of studying the strong deviation theorem of dependent random sequence; The second chapter briefly introduces the relevant basic theorems and concepts, as well as the research results related to this paper; In chapter 3, the concepts of sliding likelihood ratio and sliding relative entropy are introduced to study some strong deviation theorems for sliding average of random controlled random sequences. In chapter 4, we continue to study the strong deviation theorems of continuous sources relative to memoryless Gamma sources, and in chapter 5, we study a class of strong deviation theorems for the moving mean of random sequences with arbitrary dependent sequences and countable doubly nonhomogeneous Markov universal culverts. Chapter six summarizes and prospects the full text.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O211.4
本文编号:2419157
[Abstract]:In the late 1970s, Professor Liu Wen and his collaborators extended the strong limit theorem of probability theory to the case of inequality, established the strong deviation theorem of random sequence, and obtained abundant research results. In this paper, based on the previous studies, we consider the strong deviation theorems for a class of dependent random sequences with respect to the moving average of different reference product distributions in the case of different reference product distributions. The basic idea of the study is to introduce the sliding likelihood ratio and sliding relative entropy as a random measure of the deviation between the joint distribution and the reference product distribution of dependent random sequences. By limiting the range of sliding relative entropy, a subset of the sample space is given, and the upper and lower bounds of the moving average of random sequences, that is, the strong deviation theorem, are obtained. The main point of the proof is to construct a sliding likelihood ratio with parameters. By using the classical Borel-Cantelli Lemma and the analysis method, we obtain almost everywhere convergence inequalities. The full text is divided into six chapters: the first chapter is the introduction part, which introduces the background of this paper and the basic ideas and methods of studying the strong deviation theorem of dependent random sequence; The second chapter briefly introduces the relevant basic theorems and concepts, as well as the research results related to this paper; In chapter 3, the concepts of sliding likelihood ratio and sliding relative entropy are introduced to study some strong deviation theorems for sliding average of random controlled random sequences. In chapter 4, we continue to study the strong deviation theorems of continuous sources relative to memoryless Gamma sources, and in chapter 5, we study a class of strong deviation theorems for the moving mean of random sequences with arbitrary dependent sequences and countable doubly nonhomogeneous Markov universal culverts. Chapter six summarizes and prospects the full text.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O211.4
【参考文献】
相关期刊论文 前10条
1 金少华;赵旋;宛艳萍;闫会强;;非齐次树上马氏链场滑动平均的若干强偏差定理[J];数学的实践与认识;2015年16期
2 吴玉;范爱华;;关于可列非齐次马氏链的若干极限定理[J];纯粹数学与应用数学;2015年02期
3 吴玉;崔影;范爱华;;关于可列非齐次马氏链泛函滑动平均的一类强极限定理[J];安徽工业大学学报(自然科学版);2015年01期
4 董云;丁芳清;胡萍;;相依随机序列加权和滑动平均的若干小偏差定理[J];大学数学;2014年03期
5 简旭;吴玉;范爱华;;关于独立同分布随机序列的若干极限定理[J];安徽工业大学学报(自然科学版);2014年02期
6 金少华;王东;王永生;黄洁;;关于树上连续状态马氏泛函的一类强偏差定理[J];数学的实践与认识;2014年01期
7 汪忠志;杨卫国;;关于随机序列滑动平均的若干强偏差定理[J];工程数学学报;2011年05期
8 汪忠志;杨卫国;;关于相依离散随机序列的若干强偏差定理[J];系统科学与数学;2011年08期
9 王康康;李芳;杨卫国;;任意随机序列关于二重非齐次马氏链的随机和的一类随机选择系统的随机逼近定理[J];应用概率统计;2009年06期
10 方舒;;关于二重马氏链的相关性质[J];安庆师范学院学报(自然科学版);2008年03期
相关硕士学位论文 前1条
1 宋月升;混合相依随机变量序列的强极限定理[D];江苏大学;2009年
,本文编号:2419157
本文链接:https://www.wllwen.com/kejilunwen/yysx/2419157.html