Bargmann空间中无界Gribov-Intissar算子的谱逼近(英文)
发布时间:2019-02-21 07:56
【摘要】:在[Adv.Math.(China),2015,44(3):335-353]中,我们研究了经典Bargmann空间Bo中的非自伴算子H_μ:H_μ=S_μ+H_λ,其中S_μ=μz d/(dz),H_λ=iλ(z(d~2)/(dz~2)+z~2 d/(dz)),i~2=-1,参数μ,λ都是实数.我们给出了H_μ的谱分析和H_μ的广义特征向量的渐近分析.设ek(z)=(z~k)/((k!)~(1/2)),k=1,2,…是B0的正交基.算子H_μ可以被一列三对角矩阵逼近,此三对角矩阵的主对角线元素为β_k=μk,次对角线元素α_k=iλk(k+1)~(1/2),1≤k≤n,n∈N.对于μ∈C和λ∈C,本文主要研究上述矩阵的特征值z_(k,n)(μ,λ)的局部化,它是多项式P_(n+1)~(μ,λ)(z)的零点,P_(n+1)~(μ,λ)(z)满足三项递推关系:若"∈R和λ∈R,则上述矩阵是复对称的.在这种情况下,我们证明了R上有界变分复值函数∈(z)的存在性,它使得权重为∈(z)的多项式P_n~(μ,λ)(z)是正交的.我们也考虑了H_μ的扰动H_λ'=S_λ'+H_λ,其中S_λ'=λ'z~2(d~2)/(dz~2)+S_μ,λ'∈R,H_λ可以被矩阵(h_(jk)~λ)_(j,k=1)~∞表示.证明了可以通过S_λ'的特征值和有限矩阵(h_(jk)~λ)_(j,k=1)~n的特征值的组合来逼近H_λ'的特征值.
[Abstract]:In [Adv.Math. (China), 2015 44 (3): 335-353], we study the nonadjoint operator H _ 渭: h _ 渭 = S _ 渭 H _ 位 in classical Bargmann space Bo, where S _ 渭 = 渭 z / (dz), H位 = I 位 (z (dn2) / (dz~2) zn2 d / (dz), ix2c-1, the parameters 渭 and 位 are real numbers. We give the spectral analysis of H _ 渭 and the asymptotic analysis of generalized eigenvector of H _ 渭. Let ek (z) = (znk) / (k!) ~ (1 / 2), KG) 2,. Is the orthonormal basis of B0. The operator H _ 渭 can be approximated by a series of tridiagonal matrices, the principal diagonal elements of the tridiagonal matrices are 尾 _ k = 渭 k, the subdiagonal elements 伪 _ KG _ k 位 k (k _ 1) ~ (1 / 2), 1 鈮,
本文编号:2427356
[Abstract]:In [Adv.Math. (China), 2015 44 (3): 335-353], we study the nonadjoint operator H _ 渭: h _ 渭 = S _ 渭 H _ 位 in classical Bargmann space Bo, where S _ 渭 = 渭 z / (dz), H位 = I 位 (z (dn2) / (dz~2) zn2 d / (dz), ix2c-1, the parameters 渭 and 位 are real numbers. We give the spectral analysis of H _ 渭 and the asymptotic analysis of generalized eigenvector of H _ 渭. Let ek (z) = (znk) / (k!) ~ (1 / 2), KG) 2,. Is the orthonormal basis of B0. The operator H _ 渭 can be approximated by a series of tridiagonal matrices, the principal diagonal elements of the tridiagonal matrices are 尾 _ k = 渭 k, the subdiagonal elements 伪 _ KG _ k 位 k (k _ 1) ~ (1 / 2), 1 鈮,
本文编号:2427356
本文链接:https://www.wllwen.com/kejilunwen/yysx/2427356.html