当前位置:主页 > 科技论文 > 数学论文 >

两类完全三部图的图因子大集

发布时间:2019-02-22 20:25
【摘要】:令G是一个有限图,H是G的一个子图.若V(H)=V(G),则称H为G的生成子图.图G的一个λ重F-因子,记为S_λ(F,G),是G的一个生成子图且可分拆为若干与F同构的子图(称为F-区组)的并,使得V(G)中的每一个顶点恰出现在λ个F-区组中.一个图G的λ重F-因子大集,记为LS_λ(F,G),是G中所有与F同构的子图的一个分拆{B_i},使得每个B_i均构成一个S_λ(F,G).当λ=1时,λ可省略不写.在[Ars Combin.,2010,96:321-329]中已经得到了LS_λ(K_(1,2),K_(v,v))的存在谱.本文证明了当v≡4(mod 12)时,存在LS(F,K_(v,v,v)),这里F∈{K_(1,3),K_(2,2)}.
[Abstract]:Let G be a finite graph and H be a subgraph of G. If V (H) = V (G), then H is the generated subgraph of G. A 位 fold F- factor of a graph G, denoted as S _ 位 (FG), is a generated subgraph of G and can be broken down into the union of several subgraphs isomorphic to F (called F-domain group). So that each vertex in the V (G) appears in the 位 -block. The 位 -factor set of a graph G, denoted as LS_ 位 (FG), is a partition {Bi} of all subgraphs of G which are isomorphic to F, such that each BCI constitutes a S _ 位 (FG). When 位 = 1, 位 can be omitted and not written. In [Ars Combin.,2010,96:321-329], we have obtained the existence spectrum of LS_ 位 (K _ (1N _ 2), K _ (v). In this paper, it is proved that there exists LS (F ~ (K _ (v), where F 鈭,

本文编号:2428591

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2428591.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户66b35***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com