当前位置:主页 > 科技论文 > 数学论文 >

双单叶函数某些子类的系数估计

发布时间:2019-03-10 20:00
【摘要】:单叶函数论中,单叶函数类S的系数估计是理论研究的重要部分之一.人们在取得大量研究成果的同时,还提出了很多类S的特殊子类.例如,星形函数类,凸函数类,近凸函数类等.本论文主要采用新的处理方法来研究双单叶函数某些子类的系数估计问题.首先,介绍了系数估计的发展趋势和一些基本概念,基本理论以及相关子类的符号和定义.其次,定义了双单叶函数类的四个子类,即:S∑(λ,γ;φ),HS∑(α),R∑(η,γ;φ),和B∑(μ;φ).然后在研究了Erhan Deniz处理这些子类第二,三项系数估计问题后,提出由从属函数定义引入函数w(z),利用w(z)系数满足的不等式得出新的系数估计.最后,将两个结论对比后,对本论文的工作进行总结并提出展望.
[Abstract]:In the theory of univalent functions, the estimation of the coefficients of the class S of univalent functions is one of the important parts of the theoretical study. In addition to a lot of research results, many special subclasses of S have been proposed. For example, star function class, convex function class, nearly convex function class and so on. In this paper, a new processing method is used to study the estimation of coefficients for some subclasses of biunivalent functions. Firstly, the development trend of coefficient estimation and some basic concepts, basic theories, symbols and definitions of related subclasses are introduced. Secondly, four subclasses of biunivalent functions are defined, that is, S 鈭,

本文编号:2437971

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/yysx/2437971.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ede8e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com