两类方程的降基连续时空有限元方法研究
[Abstract]:In this paper, a class of parabolic equations and Sobolev equations are respectively solved by combining the continuous space-time finite element method and the reduced-base method, and the method has the advantages of time-space and high-precision, and also has the advantages of reducing the degree of freedom by the base-reducing method. The first chapter briefly describes the related historical background of the continuous space-time finite element method and the base-base method, and gives the definition and symbol of the finite element space involved in this paper. In the second chapter, a kind of parabolic equation is studied by the method of reducing base continuous space-time finite element method. First, the discrete form of the subbase continuous space-time finite element of a kind of parabolic equation is given, and then the variational problem of the dual problem of the original problem is introduced by giving the output function. The existence and uniqueness of a class of parabolic equations and their dual problems are proved, and a posterior error estimation is given. In the third chapter, the Sobolev equation is studied by the method of reduced-base continuous space-time finite element method, and the continuous space-time finite element discrete format of the Sobolev equation is given, and the existence and uniqueness of the numerical solution are proved. By giving the output function, the dual problem is studied and a posterior error estimate is given. Finally, the research work in this paper is summarized, and the follow-up research direction is described in detail.
【学位授予单位】:内蒙古大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O241.82
【相似文献】
相关期刊论文 前10条
1 李录贤;刘书静;张慧华;陈方方;王铁军;;广义有限元方法研究进展[J];应用力学学报;2009年01期
2 刘鸣放;车颖涛;;理工院校相关专业增设有限元方法选修课程的可行性探讨[J];高等函授学报(自然科学版);2010年02期
3 刘鸣放;车颖涛;;理工类部分本科专业增设《有限元方法》选修课程的可行性探讨[J];商丘职业技术学院学报;2010年02期
4 张斐然;;大学理工类本科专业增设《有限元方法》选修课之探讨[J];商丘师范学院学报;2011年12期
5 袁益让;一类退化非线性抛物型方程组的变网格有限元方法[J];科学通报;1985年15期
6 赵登虎,李志敏;有限元方法中网格编码的优化问题[J];工科数学;2001年02期
7 刘震,李起升,白永强;有限元方法的保结构算法(英文)[J];河南科学;2004年05期
8 陈乐生;;第一讲 什么是有限元方法[J];木工机床;2006年02期
9 李宏;魏小溪;;奇异非线性抛物方程的时空有限元方法[J];高等学校计算数学学报;2007年01期
10 孙继华;赵洪贤;韩晓华;董欣;孟令华;李庆卓;黄绪萍;杜石岩;;基于有限元方法的凹槽超声检测[J];计测技术;2009年06期
相关会议论文 前10条
1 许鹤华;周蒂;;非连续有限元方法的发展及其在地球科学中的应用[A];第七届全国数学地质与地学信息学术会议论文摘要汇编[C];2004年
2 徐方迁;何世堂;;厚金属栅力学负载贡献反射系数的有限元方法[A];中国声学学会2005年青年学术会议[CYCA'05]论文集[C];2005年
3 许鹤华;;连续时间有限元方法在求解非稳态热传导的应用[A];2000年中国地球物理学会年刊——中国地球物理学会第十六届年会论文集[C];2000年
4 陈文;陈林;傅卓佳;;河海大学“工程与科学数值模拟软件”的研究与开发[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
5 曹雄;晋长秋;;两种有限元方法能量守恒分析[A];中国工程物理研究院科技年报(2000)[C];2000年
6 陈锐敏;;求解电磁位场的高阶曲边有限元方法[A];1987年全国微波会议论文集(上)[C];1987年
7 申文;冯西桥;;细胞粘附的有限元模拟[A];损伤、断裂与微纳米力学进展:损伤、断裂与微纳米力学研讨会论文集[C];2009年
8 蔚喜军;符鸿源;常谦顺;;用有限元方法求解双曲守恒律[A];中国工程物理研究院科技年报(1998)[C];1998年
9 龙丹冰;刘西拉;;特大增量步算法在二维连续体分析上的拓展[A];中国计算力学大会'2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集[C];2010年
10 隋永枫;;陀螺系统时间有限元的内点法[A];中国计算力学大会'2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集[C];2010年
相关博士学位论文 前10条
1 周振华;自适应连续内罚有限元方法和自适应多罚间断Galerkin方法[D];南京大学;2014年
2 周少玲;非牛顿流体模型的最小二乘有限元方法[D];上海大学;2015年
3 宋飞;间断、组合多尺度有限元方法的分析与计算[D];南京大学;2016年
4 纪海峰;求解带有界面和不规则区域的椭圆问题的浸入界面有限元方法[D];南京师范大学;2015年
5 钱凌志;流体及流体耦合问题的有限元方法研究[D];南京师范大学;2016年
6 卞正宁;一阶有限元方法研究以及圆柱涡振问题的数值模拟[D];湖南大学;2016年
7 赵智慧;发展型方程的连续时空有限元方法及其数值模拟[D];内蒙古大学;2017年
8 刘庆源;多区域上双曲守恒律的间断Galerkin有限元方法及应用[D];中国科学技术大学;2017年
9 何斯日古楞;发展型方程的混合间断时空有限元方法[D];内蒙古大学;2011年
10 王春梅;椭圆型偏微分方程的弱有限元方法研究[D];南京师范大学;2014年
相关硕士学位论文 前10条
1 王怀志;航天器典型结构中高频动力学环境预示的能量有限元方法[D];哈尔滨工业大学;2015年
2 徐宇;基于有限元方法的心脏力学仿真[D];哈尔滨工业大学;2015年
3 张雨晴;两类流体力学方程组的两重变分尺度有限元方法[D];温州大学;2015年
4 李生涛;PBX变形破坏的宏细观数值模拟[D];北京理工大学;2015年
5 钱雪;二维Sobolev方程的局部间断Galerkin有限元方法[D];南京大学;2014年
6 宋航;多尺度椭圆问题的粗细网格有限元方法[D];南京大学;2013年
7 张炜;多尺度椭圆问题的间断Petrov-Galerkin有限元方法[D];南京大学;2014年
8 张琼洁;椭圆界面问题近似的非匹配界面罚有限元方法[D];南京大学;2014年
9 付海博;基于有限元方法电法测井模型的数值仿真及应用[D];电子科技大学;2015年
10 彭聪;时域有限元方法在仿真微波无源器件中的应用[D];电子科技大学;2015年
,本文编号:2447168
本文链接:https://www.wllwen.com/kejilunwen/yysx/2447168.html