基于马氏毯的链图模型结构学习
[Abstract]:As a graph model, chain graph was introduced in the mid-1980s to describe conditional independent structure. Chain graph is a kind of more extensive graph model, which includes not only undirected graph (usually called Markov network), but also directed acyclic graph (usually called Bayesian network), and chain graph is not limited to these two classes. However, in the past, the conditional independent structures used to represent probability are two more special graph models, namely, undirected graph and directed acyclic graph, and the chain graph model has not been paid much attention. However, with the deeper understanding of chain graph, more and more researchers are interested in chain graph, and chain graph will continue to be an interesting research field. In many studies on graph model, structural learning has caused a lot of discussion, and chain graph is no exception. At present, there are two main methods of structural learning: one is constraint-based method, the other is score-based method. Lauritzen summarized the most important research on structural learning in the last century. But most of the results are about undirected graphs and directed acyclic graphs. As far as I know, there are few structural learning algorithms for chain graphs, which I think is one of the important reasons why chain graphs are not widely used. Therefore, I propose a new structure learning algorithm for chain graph model in this paper. In this paper, two algorithms are proposed, one is to find the Markov blanket of all nodes in the chain graph, and the other is to learn the structure of the chain graph based on the Markov carpet. Markov blanket is a set of nodes: given the Markov blanket of one node, the node is independent of other node conditions under the assumption of fidelity. Markov blankets can be used for causal reduction, feature set selection, and chain graph structure learning. Our first algorithm is to restore the Markov carpet, which is based on the boundary of the target node and the son directly from the training set without having to learn the whole structure of the chain graph. This lays the foundation for the second algorithm. In the second algorithm, we first remove the skeleton of the pseudo-edge reduction chain graph, then determine the direction of the complex type. Finally, we obtain the corresponding maximum chain graph by iterative application of three special rules. This algorithm is a more efficient algorithm because we only need to perform conditional independent test between the target node and its Markov carpet members. Under the assumption of fidelity, we discuss the correctness of the two algorithms, and give an example to demonstrate the running process of the algorithm.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O157.5;TP301.6
【相似文献】
相关期刊论文 前10条
1 单而芳,窦荣启,康丽英;φ-容忍链图与树[J];河北大学学报(自然科学版);1996年02期
2 苏敏邦,钱建国;多边形链图中的完美匹配数(英文)[J];数学研究;2000年01期
3 刘佰军,郑忠国,赵慧;根据已知链图找出最大链图的有效的算法[J];中国科学(A辑:数学);2005年10期
4 柳柏濂;关于二连通唯一最短链图[J];华中师范大学学报(自然科学版);1986年01期
5 陈仪朝;;项链图在曲面上的嵌入[J];数学学报;2012年01期
6 卢建立;马美琳;任凤霞;;一类新链图的优美性[J];河北师范大学学报(自然科学版);2012年04期
7 任秋萍;顾娟;;利用多项式不变量α_K对内在3-链图中纽结分支的研究[J];齐齐哈尔大学学报(自然科学版);2013年02期
8 任秋萍;;带有纽结分支的内在链图和内在纽结与3-链图[J];黑龙江科技学院学报;2007年04期
9 任秋萍;王光辉;;一种带有纽结分支的内在链图[J];佳木斯大学学报(自然科学版);2009年05期
10 任秋萍;王光辉;;一类带有纽结分支的内在链图[J];科技导报;2009年22期
相关博士学位论文 前2条
1 孟宪勇;图模型基础理论研究[D];东北师范大学;2012年
2 陈学文;WS中γ,,Z_0,W~±混合圈链图传播子的解析计算及其在粒子反应中的应用[D];重庆大学;2012年
相关硕士学位论文 前8条
1 蔡倩;基于马氏毯的链图模型结构学习[D];山东师范大学;2015年
2 袭庆;链图的可压缩性[D];山东师范大学;2015年
3 任秋萍;内在链图和内在纽结图[D];哈尔滨工业大学;2006年
4 罗盼盼;链图模型的结构学习研究[D];山东师范大学;2014年
5 李显勇;一些图的Hosoya多项式分解与拓扑指标[D];新疆师范大学;2010年
6 田静;在光子重整化混合圈链图传播下的高能电子对碰撞生成重轻子对的微分截面[D];重庆大学;2010年
7 史成业;在电弱统一标准模型中研究Bhabha散射截面的重整化圈链图效应[D];重庆大学;2013年
8 潘宇;精确计算中子—反中子重整化链图传播下中子—反中子湮没产生双中性介子反应截面[D];重庆大学;2008年
本文编号:2450093
本文链接:https://www.wllwen.com/kejilunwen/yysx/2450093.html