带变号格林函数的四阶三点边值问题的多个正解的存在性
发布时间:2019-04-08 14:16
【摘要】:应用Leggett-Williams不动点定理研究了四阶三点边值问题u~((4))(t)=f(t,u(t))(t∈[0,1]),u'(0)=u″(η)=u’’’(0)=u(1)=0多个正解的存在性,其中f:[0,1]×[0,+∞)→[0,+∞)连续,η∈[3~(1/2)/3,1]为常数.尽管Green函数是变号的,对任意的正整数m,该问题仍有正解且至少有2m-1个正解.
[Abstract]:Using Leggett-Williams fixed point theorem, we study the fourth order three point boundary value problem u ~ (4) (t) = f (t, u (t) (t 鈭,
本文编号:2454648
[Abstract]:Using Leggett-Williams fixed point theorem, we study the fourth order three point boundary value problem u ~ (4) (t) = f (t, u (t) (t 鈭,
本文编号:2454648
本文链接:https://www.wllwen.com/kejilunwen/yysx/2454648.html