Poisson几何与李n-代数
发布时间:2019-04-25 14:43
【摘要】:Poisson几何与高阶结构密切相关.本文主要综述Poisson几何中的Courant代数胚、preCourant代数胚与李2-代数之间的关系;CLWX(CLWX是"Courant-刘张炬-Weinstein-徐平"的缩写)2-代数胚与李3-代数之间的关系;(非交换)omni-(n)-李代数与李2-代数之间的关系;多辛几何以及高阶Courant代数胚的迷向对合子丛与李n-代数之间的关系.
[Abstract]:Poisson geometry is closely related to higher order structures. In this paper, we mainly review the relationship between Courant algebra germs in Poisson geometry and lie 2-algebras. The relation between preCourant algebra germs and lie 2-algebras; CLWX (CLWX is abbreviated to "Courant- Liu Zhangju-Weinstein- Xu Ping") 2-algebraic germs and lie 3-algebras. The relations between (noncommutative) omni- (n)-lie algebras and lie 2-algebras, the relations between polysymplectic geometry and the isozygotic bundle of higher order Courant algebras and lie n-algebras.
【作者单位】: 吉林大学数学学院;Department
【基金】:吉林省自然科学基金(批准号:20170101050JC) 国家自然科学基金(批准号:11471139)资助项目
【分类号】:O152.5;O186.1
,
本文编号:2465219
[Abstract]:Poisson geometry is closely related to higher order structures. In this paper, we mainly review the relationship between Courant algebra germs in Poisson geometry and lie 2-algebras. The relation between preCourant algebra germs and lie 2-algebras; CLWX (CLWX is abbreviated to "Courant- Liu Zhangju-Weinstein- Xu Ping") 2-algebraic germs and lie 3-algebras. The relations between (noncommutative) omni- (n)-lie algebras and lie 2-algebras, the relations between polysymplectic geometry and the isozygotic bundle of higher order Courant algebras and lie n-algebras.
【作者单位】: 吉林大学数学学院;Department
【基金】:吉林省自然科学基金(批准号:20170101050JC) 国家自然科学基金(批准号:11471139)资助项目
【分类号】:O152.5;O186.1
,
本文编号:2465219
本文链接:https://www.wllwen.com/kejilunwen/yysx/2465219.html