一类马尔可夫跳变系统优化策略
[Abstract]:Markov jump system is a class of stochastic hybrid systems with Markov parameters. Its dynamic evolution is described by continuous time and discrete events. Discrete events are called system modes. The random jump of the system in each mode is controlled by Markov process. In practice, Markov jump systems can effectively model dynamic systems whose internal structures are susceptible to sudden changes in the environment, equipment failures, connection failures, etc., and have achieved great success, which has attracted scholars' constant attention. Therefore, the study of Markov jump system has far-reaching theoretical and practical significance. The stochastic switching law between different modes of Markov jump system is described by Markov chain. In the continuous-time Markov jump system, the switching probability is determined by the modal transfer rate matrix (MTRM), while the discrete-time Markov jump system is determined by the modal transition probability matrix (MTPM). A large number of literatures have shown that the performance of Markov jump systems is closely related to MTRM,MTPM, and most of the studies are based on the case of MTRM,MTPM as a constant value. However, in real systems, MTRM and MTPM are usually controllable, and artificial control of MTRM,MTPM can improve the stability and performance of dynamic systems. In addition, Markov jump systems are often used to model multi-noise systems, so noise can not be ignored. It is worth noting that noise not only interferes with the state of the system, but also adversely affects the performance of the system. In this paper, the optimization strategy of system performance in the presence of Gao Si noise is studied for Markov jump systems controlled by Markov chains. The optimization strategies of continuous-time Markov jump system and discrete-time Markov jump system are studied according to the difference of system state and system mode. The specific work is as follows: (1) for the continuous-time Markov jump system with controllable MTRM under Gao Si noise, the decision-control strategy of the system performance is studied, in which the decision-making representative controls the MTRM and the control represents the state controller. For the above-mentioned decision-control strategy, a mixed performance index including the cost of the linear quadratic Gao Si optimal control and the cost of the decision-making is proposed. It is assumed that MTRM, has been introduced to design the optimal state feedback controller and the optimal Markov filter respectively by using the separation theorem. The optimal decision-control pair is simplified to find the optimal decision. Finally, an iterative algorithm which can find the optimal decision quantity is proposed, and its convergence and existence are further proved. (2) for the MTPM-controllable discrete-time Markov jump system with Gao Si noise, the optimization strategy of the system performance is studied. A decision-control strategy based on controllable MTPM, is proposed. Since the introduction of decision-making inevitably results in additional control costs, a hybrid performance index is introduced in this paper. It is assumed that MTPM, has been introduced into the optimal decision making to design the optimal controller by using the separation theorem, and the mixed performance index is transformed into a function of the decision quantity. In order to minimize the mixed performance index, an iterative algorithm is proposed to find the optimal decision quantity. In this paper, the decision-control strategy of Markov jump system based on Gao Si noise and controllable MTRM/MTPM is given, and the design scheme of related controller is given theoretically. The validity of decision-control strategy is verified by simulation experiment. At the end of the paper, a summary of the research is given, and the future research direction is discussed.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:O211.62
【相似文献】
相关期刊论文 前10条
1 王宪福;蔡海涛;;关于最优决策的某些条件[J];经济数学;1989年05期
2 陈宗基,M.G.Singh;最优决策对模型参数变化的灵敏度[J];控制与决策;1991年02期
3 王效瑞;安徽未来气候变暖的农业最优决策研究[J];安徽农业大学学报;2000年03期
4 冯翠莲;;先验及后验概率下最优决策的选择[J];数理统计与管理;2006年01期
5 吕晖蓉;;家庭住房消费的最优决策[J];云南财经大学学报;2012年02期
6 杨昌业;;气候资源和最优决策[J];气象科技;1979年03期
7 施能;2×3气象——经济系统的最优决策[J];广西气象;1984年03期
8 林旭钿,郭元裕,覃强荣,蔡正,胡传廉;海涂促淤围垦最优决策方法研究[J];武汉水利电力学院学报;1988年04期
9 章艳华;;双渠道竞争情形下的最优决策研究[J];物流技术;2012年23期
10 杨春巍;;用马尔科夫决策规划制定经济发展的最优决策[J];重庆建筑工程学院学报;1988年04期
相关会议论文 前10条
1 王清杨;;综合科技计划的最优决策方法[A];发展战略与系统工程——第五届系统工程学会年会论文集[C];1986年
2 刘伟;周月梅;;一类经济问题的最优决策[A];全国青年管理科学与系统科学论文集(第2卷)[C];1993年
3 冯翠莲;;先验及后验概率下最优决策的选择[A];中国现场统计研究会第12届学术年会论文集[C];2005年
4 言小明;;供不应求下确定性需求的最优决策[A];第四届中国不确定系统年会论文集[C];2006年
5 张巨俭;;黑河灌区灌溉定额的最优决策与农业发展潜力研究[A];全国青年管理科学与系统科学论文集(第2卷)[C];1993年
6 孙薇;吕蓬;;目标规划在原棉混配最优决策中的应用[A];2002年中国管理科学学术会议论文集[C];2002年
7 周艳聪;魏杰;孙晓晨;孙利民;;考虑新旧产品并存的零售商采购量与替代价格最优决策[A];2009中国控制与决策会议论文集(1)[C];2009年
8 孙晓晨;魏灿生;魏杰;孙俊清;;具有随机需求和随机供应的产品组装系统最优决策及协调[A];第二十七届中国控制会议论文集[C];2008年
9 周艳聪;孙俊清;李维伟;;考虑新老产品相互替代的闭环供应链系统最优决策[A];第二十九届中国控制会议论文集[C];2010年
10 陈甬军;胡德宝;;垄断条件下企业研发的最优决策研究[A];第五届(2010)中国管理学年会——市场营销分会场论文集[C];2010年
相关博士学位论文 前3条
1 刘玉霜;不确定性需求下供应链的最优决策与契约协调[D];青岛大学;2013年
2 肖条军;纵向型企业集团的R&D及其经济增长的信号博弈分析[D];东南大学;2000年
3 欧阳小迅;随机条件下宏观经济系统的动态分析[D];华中科技大学;2007年
相关硕士学位论文 前4条
1 武梦梦;返回补偿策略下制造与再制造的最优决策[D];天津大学;2014年
2 王叶文;一类马尔可夫跳变系统优化策略[D];中国科学技术大学;2016年
3 肖凯;价格、时间和个性化需求对最优决策的影响[D];华中科技大学;2008年
4 赵凯;Louis Vuitton在华店铺选址最优决策分析[D];兰州大学;2013年
,本文编号:2467410
本文链接:https://www.wllwen.com/kejilunwen/yysx/2467410.html