线性与非线性Hamilton系统中的一些问题的讨论
发布时间:2019-04-28 11:13
【摘要】:本文主要研究线性与非线性Hamilton系统中的一些问题.全文分成两部分.第一部分讨论凸线性Hamilton系统基本解矩阵地R(t)在单位圆周上的特征值的变化规律.假设A(t)(t≥ 0)为连续对称正定的2n阶矩阵,J为标准辛矩阵,(?)(t) = JA(t)R(t), R(0) = I2n.假设λ∈σ(R(t0))∩U,其中t 0, U为单位圆周,定义mt为R(t)在λ附近并且在U上的特征值个数,我们将用数值计算方法验证猜测:当t→t0±时,mt是常数.第二部分讨论二阶Hamilton系统(?)+ V'(t,x) = 0,x(1) - x(0) = 0,(?)(1) - (?)(0) = M1的解的存在性问题,其中V ∈C1([0,1] × Rn,R).利用拓扑同伦延拓方法将我们要讨论的问题转化为(?)+ (1-λ)B(t)x(t) + λV'(t, x) = 0,t∈[0,1],(?)(1) - (?)(0) = 0,x(1) - x(0) = AM1来进行分析,其中M1(x(0),(?)(0),x(1),(?)(1))简写为M1 , λ∈(0,1).从而给出了一个非零解的存在性证明.
[Abstract]:In this paper, some problems in linear and nonlinear Hamilton systems are studied. The full text is divided into two parts. In the first part, we discuss the change rule of the eigenvalues of the basic solution moment position R (t) of the convex linear Hamilton system on the unit circumference. Let A (t) (t 鈮,
本文编号:2467583
[Abstract]:In this paper, some problems in linear and nonlinear Hamilton systems are studied. The full text is divided into two parts. In the first part, we discuss the change rule of the eigenvalues of the basic solution moment position R (t) of the convex linear Hamilton system on the unit circumference. Let A (t) (t 鈮,
本文编号:2467583
本文链接:https://www.wllwen.com/kejilunwen/yysx/2467583.html