齐性动力系统的有界轨道
发布时间:2019-05-06 18:48
【摘要】:齐性动力系统是由李群给出的一类特殊动力系统,与Diophantine逼近等数论方向有着紧密的联系.本文概述关于齐性动力系统有界轨道的主要问题和结果,并介绍它们与Oppenheim猜想、Littlewood猜想和Schmidt猜想等Diophantine逼近问题的关系.
[Abstract]:Homogeneous dynamical system is a kind of special dynamical system given by Li Qun, which is closely related to the direction of number theory such as Diophantine approximation. In this paper, the main problems and results of bounded orbits for homogeneous dynamical systems are summarized, and their relations with Oppenheim's conjecture, Littlewood's conjecture and Schmidt's conjecture for Diophantine approximation are introduced.
【作者单位】: 北京大学数学科学学院;北京大学北京国际数学研究中心;
【基金】:国家自然科学基金(批准号:11322101)资助项目
【分类号】:O19
,
本文编号:2470403
[Abstract]:Homogeneous dynamical system is a kind of special dynamical system given by Li Qun, which is closely related to the direction of number theory such as Diophantine approximation. In this paper, the main problems and results of bounded orbits for homogeneous dynamical systems are summarized, and their relations with Oppenheim's conjecture, Littlewood's conjecture and Schmidt's conjecture for Diophantine approximation are introduced.
【作者单位】: 北京大学数学科学学院;北京大学北京国际数学研究中心;
【基金】:国家自然科学基金(批准号:11322101)资助项目
【分类号】:O19
,
本文编号:2470403
本文链接:https://www.wllwen.com/kejilunwen/yysx/2470403.html